好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

【最新版】华师大版八年级数学下:第19章矩形、菱形与正方形章末检测2及答案.doc

21页
  • 卖家[上传人]:鲁**
  • 文档编号:447744826
  • 上传时间:2023-01-02
  • 文档格式:DOC
  • 文档大小:373.50KB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • ▲▲最新版教学资料—数学▲▲第十九章矩形,菱形与正方形章末测试(二) 总分120分120分钟 农安县合隆中学 徐亚惠一.选择题(共8小题,每题3分)1.对角线相等且互相平分的四边形是(  )A.一般四边形 B.平行四边形 C.矩形 D.菱形2.下列说法中不能判定四边形是矩形的是(  )A.四个角都相等的四边形 B.有一个角为90°的平行四边形C.对角线相等的平行四边形 D.对角线互相平分的四边形3.已知,在等腰△ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是(  )A.任意四边形 B.矩形 C.菱形 D.正方形4.在平行四边形ABCD中,增加一个条件能使它成为矩形,则增加的条件是(  )A.对角线互相平分 B.AB=BC C.AB=AC D.∠A+∠C=180°5.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是(  )A.2 B. C.1 D.6.下列条件中,不能判定四边形ABCD为菱形的是(  )A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BD D.AB=CD,AD=BC,AC⊥BD7.已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是(  )A.AC⊥BD B.AC=BD C.AC=BD且AC⊥BD D.AC平分∠BAD8.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为(  )A.2cm,2cm,2cm B.3cm,3cm,3cm C.4cm,4cm,4cm D.2cm,3cm,5cm二.填空题(共6小题,每题3分)9.如图,在四边形ABCD中,AD∥BC,且AD=BC,若再补充一个条件,如∠A= _________ 度时,就能推出四边形ABCD是矩形.10.如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是 _________ .11.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是 _________ .12.在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是 _________ .13.一组邻边相等的 _________ 是正方形,有一个角是 _________ 角的菱形是正方形.14.如图,在△ABC中,点D是边BC上一动点,DE∥AC,DF∥AB,对△ABC及线段AD添加条件 _________ 使得四边形AEFD是正方形.三.解答题(共11小题)15.(6分)如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?16.(6分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形:△ABD,△BCE,△ACF,请解答下列问题:(1)求证:四边形AFED是平行四边形;(2)当△ABC满足什么条件时,四边形AFED是矩形?(3)当△ABC满足什么条件时,四边形AFED是菱形?(4)对于任意△ABC,▱AFED是否总存在?17.(6分)如图,BC是等腰三角形BED底边DE上的高,四边形ABEC是平行四边形.判断四边形ABCD的形状,并说明理由.18.(6分)如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:AC=BE;(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形.19.(6分)已知:如图,在△ABC中,AB=AC,M是BC的中点,MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为点D、E、F、G,DF、EG相交于点P.判断四边形MDPE的形状,并说明理由.20.(8分)如图:在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由.21.(8分)如图所示,▱ABCD的对角线AC的垂直平分线EF与AD、BC、AC分别交于点E、F、O,连接AF,EC,则四边形AFCE是菱形吗?为什么?22.(8分)在△ABC中,点O是AC边上一动点,点P在BC延长线上,过点O的直线DE∥BC交∠ACB与∠ACP的平分线于点D、E.(1)点O在什么位置时,四边形ADCE是矩形?说明理由.(2)在(1)的条件下,当AC与BC满足什么条件时,四边形ADCE是正方形?为什么?23.(8分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)当点O在边AC上运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?24.(8分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.25.(8分)(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由。

      第十九章矩形,菱形与正方形章末测试(二)参考答案与试题解析一.选择题(共8小题)1.对角线相等且互相平分的四边形是(  )A. 一般四边形 B.平行四边形 C.矩形 D. 菱形考点: 矩形的判定.分析: 根据矩形的判定(矩形的对角线相等且互相平分)可得C正确.解答: 解:因为对角线互相平分且相等的四边形是矩形,所以C正确,故选C.点评: 本题考查的是矩形的判定定理(矩形的对角线相等且互相平分),难度简单.2.下列说法中不能判定四边形是矩形的是(  )A. 四个角都相等的四边形 B. 有一个角为90°的平行四边形C. 对角线相等的平行四边形 D. 对角线互相平分的四边形考点: 矩形的判定.专题: 常规题型.分析: 矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.据此判断.解答: 解:根据矩形的判定,可得A、B、C可判定四边形为矩形,D不能.故选D.点评: 本题考查的是矩形的判定以及矩形的定理,难度简单.3.已知,在等腰△ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是(  )A. 任意四边形 B.矩形 C.菱形 D. 正方形考点: 矩形的判定.分析: 由一组对边平行且相等可得其为平行四边形,再由一角为90°且邻边不等可得其为矩形.解答: 解:如图所示,∵AC=AE,AB=AD∴四边形BCDE为平行四边形,∵AB=AE,∴∠AEB=∠ABE,∵∠BAC+∠ABC+∠ACB=180°∠ABC=∠ACB∴∠ABC+∠EBA=90°∴四边形BCDE为矩形.故选B.点评: 熟练掌握矩形的判定,会证明一个四边形是矩形所满足的条件.4.在平行四边形ABCD中,增加一个条件能使它成为矩形,则增加的条件是(  )A. 对角线互相平分 B.AB=BC C.AB=AC D. ∠A+∠C=180°考点: 矩形的判定.分析: 根据矩形的判定(有一个角是直角的平行四边形是矩形),所以在平行四边形的基础上,只要满足一个角为直角即可.解答: 解:答案D中∠A与∠C为对角,∠A=∠C,又∠A+∠C=180°,∴∠A=∠C=90°,又四边形为平行四边形,所以可得其为矩形;故该选项正确,故选D.点评: 本题考查了矩形的判定,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.5.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是(  )A. 2 B. C.1 D. 考点: 菱形的判定与性质;含30度角的直角三角形.专题: 计算题.分析: 因为在直角三角形中30度角对应的直角边是斜边的一半,已知菱形的高为1,可得边长为2,所以面积为2.解答: 解:因为在直角三角形中30度角对应的直角边是斜边的一半,在题目中的菱形中,已知菱形的高为1,可得边长为2,所以面积为2.故选:A.点评: 本题考查了菱形的判定与性质,属于基础题,关键是掌握在直角三角形中30度角对应的直角边是斜边的一半.6.下列条件中,不能判定四边形ABCD为菱形的是(  )A. AC⊥BD,AC与BD互相平分 B. AB=BC=CD=DAC. AB=BC,AD=CD,AC⊥BD D. AB=CD,AD=BC,AC⊥BD考点: 菱形的判定.分析: 直接利用菱形的判定定理求解即可求得答案,注意掌握排除法在选择题中的应用.解答: 解:A、∵AC与BD互相平分,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故正确;B、∵AB=BC=CD=DA,∴四边形ABCD为菱形,故正确;C、AB=BC,AD=CD,AC⊥BD,不能判定四边形ABCD是平行四边形,故错误;D、∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故正确;故选C.点评: 此题考查了菱形的判定.此题比较简单,注意熟记定理是解此题的关键.7.已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是(  )A. AC⊥BD B.AC=BD C.AC=BD且AC⊥BD D. AC平分∠BAD考点: 正方形的判定.分析: 由四边形ABCD是平行四边形,AC⊥BD,可判定四边形ABCD是菱形,又由AC=BD,即可判定四边形ABCD是正方形.注意掌握排除法在选择题中的应用.解答: 解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故错误;B、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故错误;C、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∵AC=BD,∴四边形ABCD是正方形,故正确;D、∵四边形ABCD是平行四边形,AC平分∠BAD,∴四边形ABCD是矩形,故错误.故选C.点评: 此题考查了正方形的判定.此题比较简单,注意熟记判定定理是解此题的关。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.