好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2022年最新的多边形内角和 《多边形的内角和》教学设计汇报.docx

13页
  • 卖家[上传人]:1588****369
  • 文档编号:284559356
  • 上传时间:2022-04-28
  • 文档格式:DOCX
  • 文档大小:19.06KB
  • / 13 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 多边形内角和 《多边形的内角和》教学设计(shèjì)汇报 教学(jiāo xué)目标: 1、理解多边形及正多边形(zhèngduōbiānxíng)的定义 2、掌握多边形内角(nèi jiǎo)和公式 教学(jiāo xué)重、难点: 教学重点:1、多边形内角和公式 2、计算多边形的内角和及依据内角和确定多边形边数 教学难点:多边形内角和公式的推导 一、创设情境,导入新课 前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗你知道四边形内角和的度数吗如何计算多边形内角和吗今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课) 二、自主探究,发现新知 自学教材内容,动手操作,并思考: 1、三角形内角和多少度 2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗 3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗 4、请结合图形计算四边形、五边形、六边形的内角和。

      5、从n边形一个顶点出发可以引出多少条对角线呢这些对角线将n边形分割成了多少个三角形现在你知道多边形内角和公式了吗 6、用几何符号表示你的发现 (师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备) (设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想) 三、学生交流,展示归纳 1、自主探究展示: (1)从四边形、五边形一个顶点引发的对角线的条数 (2)从n形一个顶点引发的对角线的条数 2、合作探究展示: 四边形、五边形内角和度数及计算方法 3、归纳展示: n边形内角和公式:(n-2)×180°(n是大于或等于3的正整数) (师生活动:教师结合巡视检查,让中差生先展示,充分的暴露问题,再由中等生或优等生纠错、说理、补充、评价、修正) 通过展示交流,培养学生的“发现、归纳、总结〞能力,让学生体验从特殊到一般的数学思想方法,积累数学活动经验。

      四、类比练习,稳固提升 1、课本第24页练习1、2、3. 1、以下角度中,不能成为多边形的内角和的是( ) (A)540° (B)580° (C)1800° (D)900° 2、正五边形 的每一个外角等于___.每一个内角等于_____, 3、如果一个多边形的每一个外角等于30°,那么这个多边形的边数是_____ (师生活动:抽学生口答、板演,发动其他同学评价、补充、修订,教师做必要的点拨和纠正) (设计意图:通过一系列与探究多边形内角和过程相照应以及内角和公式的根底应用,进一步稳固学生多本节课知识的掌握,使学生获得必需的数学知识) 五、回忆反思,内化提升 1. 这节课你学到了什么 2. 你对大家有哪些建议或提醒 (师生活动:学生自主小结,同学相互补充评价,教师补充完善) (设计意图:培养学生对三角形内角和相关知识的归纳能力和对知识点进行概括的语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价) 六、当堂检测、知识过关 1、四边形ABCD中,∠A与∠C互补,如果∠B=80°,求∠D。

      2、某四边形四个内角的度数之比为1:2:3:3,求这四个内角的度数3、在四边形ABCD中,∠A=85 °∠C =115 °∠B比∠D大20°,求∠B和∠D的度数 4、多边形的一个内角的外角与其它各内角的度数总和为600°,求这个多边形的边数 (师生活动:学生独立完成,教师手拿红笔进行选择性批阅,5分钟左右,教师出示答案,学生自我评价,师生共同评价) (设计意图:通过当堂检测,及时的反应学生对本节课的学习情况,并让学生进一步掌握多边形内角和定理及外角和定理的应用,提高学生应用数学的能力) 七、布置作业 1、必做题:习题15.3复习稳固第1、2题 2、选做题:绩优学案本节课的典例探究3和稳固训练的5题 多边形内角和 《多边形的内角和》教学设计汇报 教学目标: 1.使学生掌握四边形的有关概念及四边形的内角和定理; 2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力; 3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想; 4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想. 教学重点: 四边形的内角和定理. 教学难点: 四边形的概念 教学过程: (一)复习 在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价. (二)提出问题,引入新课 利用这些图形的定义,你能在以下图中找出长方形、正方形、平行四边形和梯形吗教师说完就翻开多媒体课件.(先看画面一) 问题:你能类比三角形的概念,说出四边形的概念吗 (三)理解概念 1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形. 在定义中要强调“在同一平面内〞这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾〞和“顺次〞的`含义. 2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念. 3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序. 练习:课本124页1、2题. 4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会识别一个四边形是不是凸四边形就可以了. 5.四边形的对角线: (四)四边形的内角和定理 定理:四边形的内角和等于 . 注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决. (五)应用、反思 例1 :如图,直线 ,垂足为B, 直线 , 垂足为C. 求证:(1) ;(2) 证明:(1) (四边形的内角和等于 ), (2) 练习: 1.课本124页3题. 2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少 小结: 知识:四边形的有关概念及其内角和定理. 能力:向学生渗透类比和转化的思想方法. 作业: 课本130页 2、3、4题. 多边形内角和 《多边形的内角和》教学设计汇报 (一)教材思考: 《多边形的内角和》是冀教版小学数学四年级下册第九单元探索乐园的第1课时,本单元要求是“在问题探索中,促进数学思维开展〞。

      实现“不同的人在数学上得到不同的开展〞是《数学课程标准》的根本理念,“开展合情推理和演绎推理能力〞“清晰地表达自己的想法〞“学会独立思考、体会数学的根本思想和思维方式〞是课程标准关于数学思考方面的具体要求 教材安排了两个例题,一是探究多边形边数与分割的三角形个数的规律,二在分割三角形的根底上探索多边形内角和为了促进学生思考的连续性与有序性,我们将教材中的两个例题进行有机结合,在充分研究四边形五边形内角和方法的根底上提出如何得出任意多边形内角和问题,为开展学生的数学思维提供素材、创造探索的空间,让学生充分体会“画线段—分割三角形—求内角和〞这样一个连续推理归纳得出规律的活动 (二)学生调研及分析: 学生在本册第四单元认识了三角形、知道三角形内角和等于180度,会用字母表示数、字母表示数量关系的根底上进行学习的我们团队的成员对所在学校四年级同学进行了调研,发现他们对于数学问题具有“猜测〞的意识,但是缺乏理性的思考他们愿意自己动手尝试探索研究问题,但是对于探索之后有序思考、归纳总结认识还不够全面 有了以上分析,我们在尊重教材的根底上,确定了本节课教学目标,并对“过程与方法〞目标进行了完善补充。

      知识与技能:探索并了解多边形的边数与分割成的三角形个数,以及内角和之间隐含的规律;能运用多边形的内角和知识解决相关问题 过程与方法:学生经历探索的全过程,积累探索和发现数学规律的经验,让学生尝试从不同的角度寻求解决问题的方法,体会从特殊到一般的认识问题的方法,开展理性思考 情感态度与价值观:让学生在参与活动的过程中获得探索规律解决问题的成功体验,产生对数学的好奇心,培养归纳概括和推理能力 教学重点:经历由具体的图形发现规律的过程,获得初步的数学建模活动经验,产生对数学的好奇心,培养推理能力 教学难点:字母表达式的总结 教学准备:教师准备三角形、四边形、五边形、六边形图片,裁纸刀,课件 学生学具准备四边形、五边形等多边形图片模型,三角板 教学过程共分为四个环节 教学过程: 一、创设情境,回忆三角形知识---注重知识的“生长点〞 同学们请看这是什么图形你了解它吗 你能向大家介绍三角形哪些知识( 这样设计意图是注尊重学生已有知识经验,体会数学知识的内在联系,重点认识三角形内角的含义及三角形内角和是180度的特点) 我们知道了三角形内角和是180度,那么四边形,五边形的内角和是多少度呢这节课我们就一起来研究。

      二、自主合作,探究新知—注重“数学算法的优化〞共设计了三个探究活动 1、四边形内角和 (1)有同学愿意猜测四边形内角和吗猜测也要有根据,你能说说你的根据吗(引导学生体会理性思考) 有没有同学一看到四边形就马上想到360度呢你是根据哪个图形直接想到的(让学生借助已有的长方形、正方形知识进行理性推理,打通新旧知识之间联系) 我们通过计算长方形、正方形的内角和是360度,是不是能说明所有四边形内角和都是360度(引导学生体会这是一种“假设〞因为它是特殊图形中做的成“猜测〞) 我们需要研究怎样的图形才能发现它们一般的特征和规律(任意四边形) (2)小组活动,利用学具中的任意四边形想方法计算内角和师巡视(注意学生不同的方法) (3)学生汇报可能有计算法,引导学生起名字“量角求和法〞 撕角法,起名字“拼角求和法〞 切割法1,起名字“一分为二求和法〞(学生演示。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.