
生物专业学生必须知道的生物知识.doc
12页周期蛋白依赖性蛋白激酶概述 指的是cyclin-dependent kinases,周期蛋白依赖性蛋白激酶,是一组丝氨酸/苏氨酸蛋白激酶,和周期蛋白cyclin协同作用,是细胞周期调控中的重要因子CDK可以和cyclin结合形成异二聚体,其中CDK为催化亚基,cyclin为调节亚基,不同的cyclin—CDK复合物,通过CDK活性,催化不同底物磷酸化,而实现对细胞周期不同时相的推进和转化作用CDK的活性依赖于其正调节亚基cyclin的顺序性表达和其负调节亚基CDI(cyclin dependent kinase inhibitor,CDK抑制因子)的浓度同时,CDK的活性还受到磷酸化和去磷酸化,以及癌基因和抑癌基因的调节在哺乳动物中至少存在9种CDK,即CDK1—9,CDK家族蛋白含有一段类似的CDK结构域,其中含有一段保守序列,即PSTAIRE区域,该序列可与cyclin box结合 结构 在结构上,Cdks有三个重要的功能域第一个功能域是ATP的结合部位和该酶的活性部分;第二功能域是调节亚基(Cyclin)的结合部位;第三功能域是P13suc1的结合部位(P13suc1能抑制激酶活性,阻止细胞进入或退出M期)。
各种Cdk在细胞周期内特定的时间被激活,通过磷酸化底物,驱使细胞完成细胞周期核受体细胞核内,核受体通过三种基本的作用模式调节基因转录:1,核受体与其伴侣转录因子的二聚体受到其配体亲脂性小分子激活后结合至靶DNA的靶序列从而调节转录;2,该二聚体受到配体激活后招募其他转录因子,通过其他转录因子与靶DNA的靶序列结合调节转录;3,该二聚体受到细胞表面受体或CDK蛋白激酶的激活而与靶DNA的靶序列结合调节转录此外,最新研究发现核受体能够与胞浆蛋白发生相互作用,提示其可能具有转录因子之外的功能牛血清白蛋白牛血清白蛋白 BSA,Bovine Serum Albumin:1、 在酶切反应缓冲液中加入BSA,通过提高溶液中蛋白质的浓度,对酶起保护作用防止酶的分解和非特异性吸附,能减轻有些酶的变性,能减轻有些不利环境因素如加热,表面张力及化学因素引起的变性的酶联反应吸附剂测试(ELISA)这一方法的基本原理是:①使抗原或抗体结合到某种固相载体表面,并保持其免疫活性②使抗原或抗体与某种酶连接成酶标抗原或抗体,这种酶标抗原或抗体既保留其免疫活性,又保留酶的活性在测定时,把受检标本(测定其中的抗体或抗原)和酶标抗原或抗体按不同的步骤与固相载体表面的抗原或抗体起反应。
用洗涤的方法使固相载体上形成的抗原抗体复合物与其他物质分开,最后结合在固相载体上的酶量与标本中受检物质的量成一定的比例加入酶反应的底物后,底物被酶催化变为有色产物,产物的量与标本中受检物质的量直接相关,故可根据颜色反应的深浅进行定性或定量分析由于酶的催化频率很高,故可极大地放大反应效果,从而使测定方法达到很高的敏感度PKC系统(protein kinase C system,PKC system) 由于该系统中的第二信使是磷脂肌醇,故此这一系统又称为磷脂肌醇信号途径(phosphatidylinositol signal pathway) 在这一信号转导途径中,膜受体与其相应的第一信使分子结合后,激活膜上的Gp蛋白(一种G蛋白),然后由Gq蛋白激活磷酸脂酶Cβ (phospholipase Cβ, PLC), 将膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解为两个细胞内的第二信使:二酰甘油( diacylglycerol, DAG)和1,4,5-三磷酸肌醇(IP3)IP3动员细胞内钙库释放Ca2+到细胞质中与钙调蛋白结合,随后参与一系列的反应;而DAG在Ca2+的协同下激活蛋白激酶C(protein kinase C,PKC),然后通过蛋白激酶C引起级联反应,进行细胞的应答, 故此将该系统称为PKC系统,或称为IP3、DAG、Ca2+信号通路。
静息状态时,G蛋白的α亚基上结合的是GDP,所以没有活性,磷脂酶C也是处于非活性状态第二信使IP3/DAG还是以前体PIP2存在内质网上的Ca2+离子配体闸门通道是关闭的,蛋白激酶C也是以可溶的非活性状态存在于细胞质中酪氨酸激酶受体型 受体酪氨酸激酶(receptor protein tyrosine kinases,RPTKs)的胞外区是结合配体结构域,配体是可溶性或膜结合的多肽或蛋白类激素,包括胰岛素和多种生长因子胞内段是酪氨酸蛋白激酶的催化部位,并具有自磷酸化位点 配体(如EGF)在胞外与受体结合并引起构象变化,导致受体二聚化(dimerization)形成同源或异源二聚体,在二聚体内彼此相互磷酸化胞内段酪氨酸残基,激活受体本身的酪氨酸蛋白激酶活性这类受体主要有EGF、PDGF、FGF等 受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signaling complex)。
刚刚磷酸化的酪氨酸部位立即成为细胞内信号蛋白(signaling protein)的结合位点,可能有10~20种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应;或者将不同的信息综合起来引起细胞的综合性应答(如细胞增殖) RPTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化所有的RTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨酸蛋白激酶(RTK)活性的细胞内结构域 已发现50多种不同的RTKs,主要的几种类型包括: ①表皮生长因子(epidermal growth factor, EGF) 受体; ②血小板生长因子(platelet-derived growth factor, PDGF) 受体 巨噬细胞集落刺激生长因子(macrophage colony stimulating factor, M-CSF); ③胰岛素和胰岛素样生长因子-1 (insulin and insulin-like growth factor-1, IGF-1) 受体; ④神经生长因子(nerve growth factor, NGF) 受体; ⑤成纤维细胞生长因子(fibroblast growth factor, FGF) 受体; ⑥血管内皮生长因子(vascularendothelial growth factor, VEGF)受体 肝细胞生长因子 (hepatocyte growth factor, HGF) 受体等。
非受体型酪氨酸激酶JAK家族 JAK(just another kinase或janus kinase)是一类非受体酪氨酸激酶家族,已发现四个成员,即JAK1 、JAK2 、JAK3和TYK1,其结构不含SH2 、SH3,C段具有两个相连的激酶区 JAK-STAT途径主要是各种细胞因子与受体结合,使其二聚体化,JAK相互靠近、磷酸化,使受体上的酪氨酸残基磷酸化,通过STAT形成二聚体后, STAT与受体分离,转位到核内,结合到DNA序列,从而调控基因表达 JAK的底物为STAT,即信号转导子和转录激活子(signal transducer and activator of transcription,STAT),具有SH2和SH3两类结构域STAT被JAK磷酸化后发生二聚化,然后穿过核膜进入核内调节相关基因的表达,这条信号通路称为JAK-STAT途径,可概括如下: 1、 配体与受体结合导致受体二聚化; 2、 二聚化受体激活JAK; 3、 JAK将STAT磷酸化; 4、 STAT形成二聚体,暴露出入核信号; 5、 STAT进入核内,调节基因表达 FAK FAK(focal adhesion kinase)是Schaller等发现的能被scr内源性蛋白酪氨酸激酶激活的主要底物,属于非受体蛋白酪氨酸激酶,具有调节细胞发育、生长、存活和凋亡,调节细胞与ECM(细胞外基质)黏附的功能。
Tec家族 Tec家族是近几年国外研究较活跃的胞浆内酪氨酸蛋白激酶分子,也是非受体酪氨酸激酶家族,它们主要在淋巴细胞和髓样细胞中表达该家族成员有Btk、Itk/Tsk/Emt、 Tec、Txk和Bmx,其结构具有高度同源性,均由PH结构域、SH3、SH2及激酶结构域组成,其N端缺乏疏水性跨膜结构,而C端缺乏负性调节区它们所介导的信号转导主要在免疫细胞的分化、发育、增殖和凋亡过程中起着重要的作用SH2结构域 SH结构域是“Src同源结构域”(Src homology domain)的缩写(Src是一种癌基因,最初在Rous sarcoma virus 中发现)这种结构域是能够与受体酪氨酸激酶磷酸化残基紧紧结合,形成多蛋白的复合物进行信号转导 SH2结构域含有约100个氨基酸残基,中间一段为反平行β-片层,两端各一个α-螺旋,SH2结构域特异性地识别配基上磷酸化的酪氨酸残基及其c端的3~5个氨基酸残基SH3选择性结合不同的富含脯氨酸的基序(motifs) SH2结构域能够与生长因子受体(如PDGF和EGF)自我磷酸化的位点结合含有SH2结构域的蛋白也常常含有SH3结构域 比如在RTKs(受体酪氨酸激酶)蛋白信号通路中需要接头蛋白,如生长因子受体结合蛋白2(GRB2);信号通路中的关键酶,如GTP酶活化蛋白(GAP)。
他们都含有SH2和SH3结构域报告基因报告基因(reporter gene)是一种编码可被检测的蛋白质或酶的基因,也就是说,是一个其表达产物非常容易被鉴定的基因把它的编码序列和基因表达调节序列相融合形成嵌合基因,或与其它目的基因相融合,在调控序列控制下进行表达,从而利用它的表达产物来标定目的基因的表达调控,筛选得到转化体作为报告基因,在遗传选择和筛选检测方面必须具有以下几个条件: (1)已被克隆和全序列已测定; (2)表达产物在受体细胞中本不存在,即无背景,在被转染的细胞中无相似的内源性表达产物; (3)其表达产物能进行定量测定反式作用因子反式作用因子(trans-acting factor) 是指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质 大多数真核转录调节因子由某一基因表达后,可通过另一基因的特异的顺式作用元件相互作用,从而激活另一基因的转录这种调节蛋白称反式作用因子 参与基因表达调控的因子, 它们与特异的靶基因的顺式元件结合起作用编码反式作用因子的基因与被反式作用因子调控的靶序列(基因)不在同一染色体上反式作用因子有两个重要的功能结构域:DNA结合结构域和转录活化结构域,它们是其发挥转录调控功能的必需结构,此外还包含有连接区。
反式作用因子可被诱导合成, 其活性也受多种因素的调节 同一类序列特异性的反式作用因子由多基因家族所编码, 它们具有特定的蛋白质结构(如上述的锌指结构、碱性亮氨酸拉链、螺旋-环-螺旋基元等)和蛋白质结构上的同源性, 因而构成反式作用因子家族, 如类固醇激素受体家族、AP1家族等。












