
收益法中的主要技术方法(公式推导).doc
6页收益法中的主要技术方法(一)纯收益不变数列求和的基本公式有:公式 P=在第一年的年末所能得到的纯收益为A元,要将其折算为现在的价格时,只要将A元乘复利现值系数即可,即:A×=第二年的年末所能得到的纯收益A元,要折算为现值时,同样应为:A×()×()=第n年则为:A×=将各年合计,则收益现值P=++……+这是一个首项为,公比为,项数为n的等比级数根据等比级数求和公式, 得:P=A当n→∞时P= P=×当收益年期有限时,根据上述公式推导P=× 成立二)纯收益在若干年后保持不变1、无限年期收益公式2-16 P=+2、有限年期收益 公式2-17P=+× 相当于P=R1(,r,1)+……R5(,r,5)+A(,r,N-n)×(,r,n)(三)纯收益按等差级数变化先看公式2-20 P=(+)×-×(收益年限有限条件下)当纯收益为逐年递增,每年递增额为b,则:收益第一年为a,第二年为a+b,第三年为a+2b,第n年为a+(n-1)b则收益现值P=+++……+=Sn1+Sn2Sn1=++……+=×Sn2=++……+=b×…①将①式两边同乘以(1+r),则有:(1+r)Sn2=b×…②②式减去①式:r·Sn2=b·r·Sn2=b· =·-Sn2=·-·P= Sn1+Sn2=+·-· =·-· 公式2-20成立。
当n→取极限时,P=+,公式2-19成立公式2-21、公式2-22同上推导,数列为a,a-b,a-2b,……, a-(n-1)b注意正负号,则推导成立四)纯收益按等比级数变化公式2-23 P=设A0为上年纯收益,资产收益逐年递增比率为s,则有:A=A1为=A0·(1+s)A2=A1=A0·(1+s)·(1+s)=A0·At=A0·当收益年期无限时(设收益现值为P0):P0=++……+ =A0·中括号中为一幂级数求和,当s
②当公式中的A、r、n变化时可以导出上述各种公式③本公式只有理论分析上的意义,实践中无法操作。
