
沪科版初二数学下册《17.1-一元二次方程》ppt课件.ppt
25页17.1 一元二次方程第17章 一元二次方程导入新课讲授新课当堂练习课堂小结学习目标1.理解一元二次方程的概念.(难点)2.根据一元二次方程的一般形式,确定各项系数.3.理解并灵活运用一元二次方程概念解决有关问题.(重点)导入新课导入新课复习引入没有未知数1.下列式子哪些是方程?2+6=82x+35x+6=22x+3y=8x-5<18代数式一元一次方程二元一次方程不等式分式方程2.什么叫方程?我们学过哪些方程?含有未知数的等式叫做方程.我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.3.什么叫一元一次方程? 含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.想一想:什么叫一元二次方程呢?问题1 如图,已知一矩形的长为200cm,宽150cm.现在矩形中挖去一个圆,使剩余部分的面积为原矩形面积的四分之三.求挖去的圆的半径xcm应满足的方程(其中π取3).解:设由于圆的半径为xcm,,则它的面积为 3x2 cm2.整理,得该方程中未知数的个数和最高次数各是多少?一元二次方程的概念一讲授新课讲授新课根据题意有,200cm150cm问题2 如图,据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆.求该市两年来汽车拥有量的年平均增长率x应满足的方程.解:该市两年来汽车拥有量的年平均增长率为x,,整理,得该方程中未知数的个数和最高次数各是多少?根据题意有,问题3 在一块宽20m、长32m的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直),把矩形空地分成大小一样的六块,建成小花坛.如图要使花坛的总面积为570m2,问小路的宽应为多少?3220x1.若设小路的宽是xm,那么横向小路的面______m2,纵向小路的面积是 m2,两者重叠的面积是 m2.32x2.由于花坛的总面积是570m2.你能根据题意,列出方程吗?整理以上方程可得:思考:2×20x32×20-(32x+2×20x)+2x2=5702x2x2-36x+35=0 ③3220x想一想:还有其它的列法吗?试说明原因.(20-x)(32-2x)=57032-2x20-x3220观察与思考 方程①、②、③都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.x2-36x+35=0 ③ 只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的形式,这样的方程叫做一元二次方程.ax2+bx +c = 0(a , b , c为常数, a≠0)ax2 称为二次项, a 称为二次项系数. bx 称为一次项,b 称为一次项系数. c 称为常数项.知识要点u一元二次方程的概念一元二次方程的概念 u一元二次方程的一般形式是一元二次方程的一般形式是想一想 为什么一般形式中ax2+bx+c=0要限制a≠0,,b、、c 可以为零吗?当 a = 0 时bx++c = 0 当 a ≠ 0 , b = 0时 ,ax2++c = 0 当 a ≠ 0 , c = 0时 ,ax2++bx = 0 当 a ≠ 0 ,,b = c =0时 ,ax2 = 0 总结:只要满足a ≠ 0 ,,b ,, c 可以为任意实数.典例精析例1 下列选项中,关于x的一元二次方程的是( )C不是整式方程含两个未知数化简整理成x2-3x+2=0少了限制条件a≠0提示 判断一个方程是不是一元二次方程,首先看是不是整式方程;如是再进一步化简整理后再作判断.例2:a为何值时,下列方程为一元二次方程?(1)ax2-x=2x2(2) (a-1)x |a|+1 -2x-7=0.解:(1)将方程式转化为一般形式,得(a-2)x2-x=0,所以当a-2≠0,即a≠2时,原方程是一元二次方程. (2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方程是一元二次方程.方法点拨:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值. 例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式3x2-8x-10=0. 其中二次项是3x2,系数是3;一次项是-8x,系数是-8;常数项是-10.系数和项均包含前面的符号.注意一元二次方程的根二u一元二次方程的根 使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).练一练:下面哪些数是方程 x2 – x – 6 = 0 的解? -4 ,-3 , -2 ,-1 ,0 ,1,2,3 ,4解: 3和-2.你注意到了吗?一元二次方程可能不止一个根. 例4:已知a是方程 x2+2x-2=0 的一个实数根, 求 2a2+4a+2017的值. 解:由题意得方法点拨:求代数式的值,先把已知解代入,再注意观察,有时需运用到整体思想,求解时,将所求代数式的一部分看作一个整体,再用整体思想代入求值.当堂练习当堂练习 1. 下列哪些是一元二次方程?√×√××√3x+2=5x-2x2=0(x+3)(2x-4)=x23y2=(3y+1)(y-2)x2=x3+x2-13x2=5x-12.填空:方程一般形式二次项系数一次项系数常数项-21313-540-53-21)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?100cm50cmx3600cm2解:设切去的正方形的边长为xcm,则盒底的长为((100-2x)cm,宽为(50-2x)cm,根据方盒的底面积为3600cm2,得化简,得3.请根据题意列出方程,并化为一般形式.2)要组织要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?解:根据题意,列方程:化简,得:4.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值.解:由题意把x=3代入方程x2+ax+a=0,得32+3a+a=09+4a=04a=-95.若关于x的一元二次方程((m+2)x2+5x+m2-4=0有一个根为0,求m的值.二次项系数不为零不容忽视解:将x=0代入方程m2-4=0,,解得m= ±2.∵∵ m+2 ≠0,,∴∴ m ≠-2,,综上所述::m =2.拓广探索 已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)的一个根为1, 求a+b+c的值. 解:由题意得思考:1.若 a+b+c=0,你能通过观察,求出方程ax2+bx+c=0 (a≠0)的一个根吗? 解:由题意得∴方程ax2+bx+c=0 (a≠0)的一个根是1.2. 若 a-b +c=0,4a+2b +c=0 ,你能通过观察,求出方程ax2+bx+c=0 (a≠0)的一个根吗? x=2或x=-1课堂小结课堂小结一 元 二次 方 程概 念①是整式方程;②含一个未知数;③最高次数是2.一般形式ax2+bx+c=0 (a ≠0) 其中(a≠0)是一元二次方程的必要条件;根使方程左右两边相等的未知数的值.。
