
达标测试沪科版八年级数学下册第17章-一元二次方程专题攻克练习题(精选含解析).docx
17页八年级数学下册第17章 一元二次方程专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的方程有两个不相等的实数根,则n的取值范围是( )A.n< B.n ≤ C.n> D.n>2、原价为80元的某商品经过两次涨价后售价100元,如果每次涨价的百分率都为,那么根据题意所列的方程为( )A. B. C. D.3、若 是关于x的一元二次方程,则m的取值范围是( )A.m>2 B.m≠0 C.m≤2 D.m≠24、一元二次方程的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.只有一个实数根5、关于x的一元二次方程有实数根,则k的取值范围是( ).A. B.且C.且 D.6、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是( )A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.无法判断7、若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为( )A.﹣16 B.﹣13 C.﹣10 D.﹣88、下列方程是一元二次方程的是( )A. B.C. D.9、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.1110、方程的根为( )A. B., C. D.,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于的一元二次方程有一个根为1,一个根为,则_________,__________.2、方程的解是____________.3、重庆某风景区2021年三月份共接待游客4000人次,五月份共接待游客9000人次,则每月的平均增长率为______.4、观察下列方程:①x+=3;②x+=5;③x+=7,可以发现它们的解分别是①x=1或2;②x=2或3;③x=3或4.利用上述材料所反映出来的规律,可知关于x的方程x+=2n+4(n为正整数)的解x= ________________.5、若x0是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式Δ=b2﹣4ac与平方式M=(2ax0+b)2的大小比较△_______M(填>,<,=).三、解答题(5小题,每小题10分,共计50分)1、解方程:x2﹣2x=2(x+1).2、随着人们对健康生活的追求,有机食品越来越受到人们的喜爱和追捧,某商家打算花费40000元购进一批有机绿色农产品存放于冷库.实际购买时供货商促销,可以在标价基础上打8折购进这批产品,结果实际比计划多购进400千克.(1)实际购买时,该农产品多少元每千克?(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?3、我们知道,整式,分式,二次根式等都是代数式,代数式是用基本运算符号连接起来的式子,而当被除数是一个二次根式,除数是一个整式时,求得的商就会出现类似这样的形式,我们称形如这种形式的式子称为根分式,例如,都是根分式.(1)请根据以上信息,写出一个取值范围是x>2的根分式: ;(2)已知两个根分式M=与N=.①是否存在x的值使得N2﹣M2=1,若存在,请求出x的值,若不存在,请说明理由;②当M2+N2是一个整数时,写出两个满足条件的无理数x的值.4、解方程:2x2+x﹣15=0.5、解方程:(1);(2).-参考答案-一、单选题1、A【分析】利用判别式的意义得到△=>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)²﹣4n>0,解得n< .故选:A.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.2、A【分析】根据每次涨价的百分率都为,利用百分率表示某商品经过两次涨价后售价,根据题意所列的方程为:即可.【详解】解:∵每次涨价的百分率都为,∴某商品经过两次涨价后售价,∴根据题意所列的方程为:.故选项A.【点睛】本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系,两种表示涨价后的价格相同列方程是解题关键.3、D【详解】解:∵ 是关于x的一元二次方程,∴ ,∴ .故选:D【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程是解题的关键.4、A【分析】根据根的判别式即可求出答案.【详解】解:原方程化为:,∴,故选:A.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型.5、C【分析】根据一元二次方程的定义和根的判别式得到Δ=42+8k≥0且k≠0,然后求出两不等式的公共部分即可;【详解】解:∵一元二次方程有实数根,∴Δ=42﹣4×(-2)k≥0且k≠0,∴k≥-2且k≠0;故选:C【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.6、B【分析】判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.【详解】解:∵关于x的一元二次方程为ax2+bx+c=0,∴Δ=b2﹣4ac,∵ac<0,∴﹣ac>0,又∵b2≥0,∴Δ>0,∴方程有两个不相等的实数根.故选B.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.7、A【分析】将m代入2x2﹣3x﹣1=0可得2m2﹣3m﹣1=0,再化简所求代数为﹣6m2+9m﹣13=-3(2m2﹣3m)﹣13,即可求解.【详解】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴﹣6m2+9m﹣13=﹣3(2m2﹣3m)﹣13=﹣3×1﹣13=﹣16,故选:A.【点睛】本题考查一元二次方程的解,熟练掌握一元二次方程的解与一元二次方程的关系,灵活变形所求代数式是解题的关键.8、C【分析】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.【详解】A.有两个未知数,错误;B.不是整式方程,错误;C.符合条件;D.化简以后为,不是二次,错误;故选:C.【点睛】本题考查一元二次方程的定义.根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.9、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.10、D【分析】首先移项,然后提取公因式x,即可得到,则可得到两个一次方程:或,继而求得答案.【详解】∵,∴,∴,即或,解得:或.故选:D.【点睛】此题考查了因式分解法解一元二次方程.此题比较简单,解题的关键是找到公因式x,利用提取公因式法求解.二、填空题1、0 0 【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.【详解】将1代入方程得:,即;将﹣1代入方程得:,即;故答案为0,0.【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.2、【分析】由题意易得,然后问题可求解.【详解】解:∴,∴;故答案为.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.3、50%【分析】设每月的平均增长率为x,然后根据题意列一元二次方程解答即可.【详解】解:设每月的平均增长率为x4000(1+x)2=9000解得x=0.5=50%或x=-0.5(不合题意舍去).故答案是50%.【点睛】本题主要考查了一元二次方程的应用—增长率问题,设出未知数、正确列出一元二次方程成为解答本题的关键.4、n+3或n+4【分析】分别对三个方程式变形,并求三个方程式的解,根据方程的解发现规律即可求解.【详解】分别对三个方程式变形,并求三个方程式的解:①x+= x+=1+2,在等式两边同时乘以x,移项得x2- 3x+2=0,即(x- 2)(x- 3)=0,故解得x = 1或x=2;②x+= x+=2+3,同理解得x = 2或x =3;③x+= x+=3+4,同理解得x =3或x =4;以此类推,第n个方程为:x+= x+,且解为:x =n或x =n+1;将方程x+=2n+4两边同时减3,得(x-3)+=2n+1,根据规律得:x-3 =n或x -3=n+1,即x =n+3或x =n+4.故答案为:n+3或n+4.【点睛】此题考查数字的规律,分别对三个方程式变形,并求三个方程式的解发现规律是解答此题的关键.5、=【分析】首先把展开,然后把x0代入方程ax2+bx+c=0中得,再代入前面的展开式中即可得到△与M的关系.【详解】解:把x0代入方程中得,∵,∴ ,∴Δ=M.故答案为:=.【点睛】本题是一元二次方程的解与根的判别式的结合试题,考查了根的判别式,既利用了方程的根的定义,也利用了完全平方公式.三、解答题1、【分析】方程先整理成一般形式,再根据公式法求解即可;【详解】解:原方程可整理为,∴方程的解,∴.【点睛】本题考查了一元二次方程的解法,熟练掌握一元二次方程的求根公式是解题的关键.2、(1)实际购买时该农产品20元每千克.(2)存放70天后一次性出售可获利19600元.【分析】(1)设该农产品标价为x元/千克,则实际为元/千克.根据等量关系40000购买标价x的产品数量+400=40000购买优惠的价格的产品数量,列方程解方程即可;(2)设存放a天后一次性卖出可获得19600元.根据售价×损失后的数量-a天需要支出各种费用280a元-进价=利润,列方程,解方程即可.。
