好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

《可分离变量》PPT课件.ppt

16页
  • 卖家[上传人]:pu****.1
  • 文档编号:601238015
  • 上传时间:2025-05-16
  • 文档格式:PPT
  • 文档大小:303KB
  • / 16 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第七章 微分方程,第一节 微分方程的基本概念,第二节 可分离变量的微分方程,第三节 齐次方程,第四节 一阶线性微分方程,第六节 高阶线性微分方程,第七节 常系数齐次线性微分方程,第八节 常系数非齐次线性微分方程,第五节 可降阶的微分方程,1,(一)引言,(二)基本概念,第一节 微分方程的基本概念,2,函数,变量间的联系,实际问题,含有未知函数,及其导数的等式,求解,微分方程,例,1,一曲线通过点(1,2),在该曲线上任意点,M,(,x,y,)处的切线的斜率,为2,x,,求该曲线的方程.,分析:,3,表示未知函数、未知函数的导数与自变量之间关系的方程.,例,基 本 概 念,微分方程:,微分方程中所出现的未知函数的最高阶导数的阶数,微,分方程的阶:,(,n,阶,显式,微分方程),一般地,n,阶常微分方程的形式是,或,常微分方程,偏微分方程,未知函数,一元函数,多元函数,4,微分方程的解:,例,特解:,x,=0,y,=0,初始条件,微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同.,确定了通解中任意常数后的解.,通解:,通解,特解,代入微分方程使方程恒成立的函数.,过定点的积分曲线;,一阶:,二阶:,过定点且在定点的切线的斜率为定值的积分曲线.,求微分方程满足初始条件的特解的问题.,初值问题:,5,解,例2,验证函数 是微分方程,的解.,的特解,并求满足初始条件,所求特解为,6,2 可分离变量的微分方程,一阶微分方程:,或,-对称形式,可分离变量的微分方程,.,转化,解分离变量方程,7,可分离变量方程,解法,积分,(显式)通解,隐式通解,初始条件,特解,设,y,(,x,),是方程(1)的解,则有恒等式,积 分,8,例1.,求微分方程,的通解.,解:分离变量得,两边积分,得,即,(,C,为任意常数),或,说明:,在求解过程中每一步不一定是同解变形,因此可能增、,减解.,(此式含分离变量时丢失的解,y,=0,),9,例2.,解初值问题,解:,分离变量得,两边积分得,即,由初始条件得 C=1,(C 为任意常数),故所求特解为,10,解,由题设条件,衰变规律,技巧,11,例4.,求下述微分方程的通解:,解:,令,则,故有,即,解得,(,C,为任意常数,),所求通解:,12,练习,:,解法 1,分离变量,即,(,C,0,),解法 2,故有,积分,(,C,为任意常数),所求通解:,积分,13,思 考,求下列方程的通解:,提示:,(1),分离变量,(2),方程变形为,14,内容小结,1.微分方程的概念,微分方程;,2.可分离变量方程的求解方法:,说明:,通解不一定是方程的全部解.,有解,后者是通解,但不包含前一个解.,例如,方程,分离变量后积分;,根据定解条件定常数.,解;,阶;,通解;,特解,y=x,及,y=C,15,作业,P 304 1,(1),(4),(5),(7),2,(3),(4);,预习:第三节,16,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.