
河北省石家庄市同文中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】.doc
24页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河北省石家庄市同文中学2025届九年级数学第一学期开学教学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个A.1 B.2 C.3 D.42、(4分)下列四组线段中,能组成直角三角形的是 A.,, B.,,C.,, D.,,3、(4分)下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.4、(4分)下列事件中是必然事件的是( )A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.一组对边平行,另一组对边相等的四边形是等腰梯形C.如果,那么D.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月5、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为( )A.2.4cm B.4.8cm C.5cm D.9.6cm6、(4分)小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是( )A.13千米 B.14千米 C.15千米 D.16千米7、(4分)为了了解班级同学的家庭用水情况,小明在全班50名同学中,随机调查了10名同学家庭中一年的月平均用水量(单位:吨),绘制了条形统计图如图所示.这10名同学家庭中一年的月平均用水量的中位数是( )A.6 B.6.5 C.7.5 D.88、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为__.10、(4分)已知一组数据为1,2,3,4,5,则这组数据的方差为_____.11、(4分)已知直线与平行且经过点,则的表达式是__________.12、(4分)已知一次函数()经过点,则不等式的解集为__________.13、(4分)如图,矩形全等于矩形,点在上.连接,点为的中点.若,,则的长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)15、(8分)如图,直线是一次函数的图象.(1)求出这个一次函数的解析式; (2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与轴的交点坐标16、(8分)如图,在平面直角坐标系 xOy中,直线y=kx+b与 x轴相交于点A,与反比例函数在第一象限内的图像相交于点 A(1,8)、B(m,2).(1)求该反比例函数和直线y =kx+b的表达式;(2)求证:ΔOBC为直角三角形;(3)设∠ACO=α,点Q为反比例函数在第一象限内的图像上一动点,且满足90°-α<∠QOC<α,求点Q的横坐标q的取值范围. 17、(10分)八年级班一次数学测验,老师进行统计分析时,各分数段的人数如图所示(分数为整数,满分分).请观察图形,回答下列问题:(1)该班有____名学生:(2)请估算这次测验的平均成绩.18、(10分)某学生本学期6次数学考试成绩如下表所示:成绩类别第一次月考第二次月考期中第三次月考第四次月考期末成绩/分105110108113108112(1)6次考试成绩的中位数为 ,众数为 .(2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)使有意义的x取值范围是______.20、(4分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为_____.21、(4分)如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.22、(4分)为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和 分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”). 23、(4分)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,中,是的中点,将沿折叠后得到,且 点在□内部.将延长交于点. (1)猜想并填空:________(填“”、“”、“”);(2)请证明你的猜想;(3)如图,当,设,,,证明:.25、(10分)如图,在ABCD中,AD∥BC,AC=BC=4,∠D=90°,M,N分别是AB、DC的中点,过B作BE⊥AC交射线AD于点E,BE与AC交于点F.(1)当∠ACB=30°时,求MN的长:(2)设线段CD=x,四边形ABCD的面积为y,求y与x的函数关系式及其定义域;(3)联结CE,当CE=AB时,求四边形ABCE的面积.26、(12分)(1)解分式方程:(2)解不等式组,并在数轴上表示其解集.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.2、D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.1²+2²≠3²,故不是直角三角形,故本选项错误;B.2²+3²≠4²故不是直角三角形,故本选项错误;C.2²+4²≠5²,故不是直角三角形,故本选项错误;D.3²+4²=5 ²,故是直角三角形,故本选项正确.故选D.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、A【解析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误. 故选:A.本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.4、D【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚质地均匀的硬币100次,正面朝上的次数为50次是随机事件;B、一组对边平行,另一组对边相等的四边形是等腰梯形是随机事件;C、如果a2=b2,那么a=b是随机事件;D、13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月是必然事件;故选:D.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【解析】解:如图所示:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB=,∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,∴DE==4.8;故选B.6、C【解析】由纵坐标看出,返回时离家的距离是30千米,由横坐标看出,返回时所用的时间是15−13=2小时,由路程与时间的关系,得返回时的速度是30÷2=15千米,由时间、速度的关系得15×1=15千米,故选:C. 7、B【解析】根据条形统计图,即可知道每一名同学家庭中一年的月均用水量,再根据中位数的概念进行求解【详解】解::共。
