
高中数学平面解析几何初步经典例题.doc
8页直线和圆的方程一、知识导学 1.两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|2-1|或|AB|=|2-1|.2.定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是.当P点为AB的中点时,λ=1,此时中点坐标公式是.3.直线的倾斜角和斜率的关系(1)每一条直线都有倾斜角,但不一定有斜率.(2)斜率存在的直线,其斜率与倾斜角α之间的关系是=tanα.4.确定直线方程需要有两个互相独立的条件直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.名称方程说明适用条件斜截式为直线的斜率b为直线的纵截距倾斜角为90°的直线不能用此式点斜式() 为直线上的已知点,为直线的斜率倾斜角为90°的直线不能用此式两点式=(),()是直线上两个已知点与两坐标轴平行的直线不能用此式截距式+=1为直线的横截距b为直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式,,分别为斜率、横截距和纵截距A、B不全为零5.两条直线的夹角。
当两直线的斜率,都存在且·≠ -1时,tanθ=,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.(1)斜率存在且不重合的两条直线1∶, 2∶,有以下结论:①1∥2=,且b1=b2②1⊥2·= -1(2)对于直线1∶,2 ∶,当1,2,1,2都不为零时,有以下结论:①1∥2=≠②1⊥212+12 = 0③1与2相交≠④1与2重合==7.点到直线的距离公式.(1)已知一点P()及一条直线:,则点P到直线的距离d=;(2)两平行直线1: , 2: 之间的距离d=.8.确定圆方程需要有三个互相独立的条件圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;(2)圆的一般方程:(>0),圆心坐标为(-,-),半径为=.二、疑难知识导析 1.直线与圆的位置关系的判定方法.(1)方法一 直线:;圆:.一元二次方程(2)方法二 直线: ;圆:,圆心(,b)到直线的距离为d=2.两圆的位置关系的判定方法.设两圆圆心分别为O1、O2,半径分别为1,2,|O1O2|为圆心距,则两圆位置关系如下:|O1O2|>1+2两圆外离;|O1O2|=1+2两圆外切;| 1-2|<|O1O2|<1+2两圆相交;| O1O2 |=|1-2|两圆内切;0<| O1O2|<| 1-2|两圆内含.三、经典例题导讲 [例1]直线l经过P(2,3),且在x,y轴上的截距相等,试求该直线方程.错解:设直线方程为:,又过P(2,3),∴,求得a=5 ∴直线方程为x+y-5=0.错因:直线方程的截距式: 的条件是:≠0且b≠0,本题忽略了这一情形.正解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:,∴直线方程为y=x综上可得:所求直线方程为x+y-5=0或y=x .[例2]已知动点P到y轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P的轨迹方程.错解:设动点P坐标为(x,y).由已知3 化简3=x2-2x+1+y2-6y+9 . 当x≥0时得x2-5x+y2-6y+10=0 . ①当x<0时得x2+ x+y2-6y+10=0 . ②错因:上述过程清楚点到y轴距离的意义及两点间距离公式,并且正确应用绝对值定义将方程分类化简,但进一步研究化简后的两个方程,配方后得(x-)2+(y-3)2 = ① 和 (x+)2+(y-3)2 = - ②两个平方数之和不可能为负数,故方程②的情况不会出现.正解: 接前面的过程,∵方程①化为(x-)2+(y-3)2 = ,方程②化为(x+)2+(y-3)2 = - ,由于两个平方数之和不可能为负数,故所求动点P的轨迹方程为: (x-)2+(y-3)2 = (x≥0)[例3]m是什么数时,关于x,y的方程(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图象表示一个圆?错解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C≠0, 得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3, ∴当m=1或m=-3时,x2和y2项的系数相等,这时,原方程的图象表示一个圆错因:A=C,是Ax2+Cy2+F=0表示圆的必要条件,而非充要条件,其充要条件是:A=C≠0且<0.正解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C≠0, 得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3,(1) 当m=1时,方程为2x2+2y2=-3不合题意,舍去.(2) 当m=-3时,方程为14x2+14y2=1,即x2+y2=,原方程的图形表示圆.[例4]自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在的直线方程.错解:设反射光线为L′,由于L和L′关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A′(-3,-3),于是L′过A(-3,-3). 设L′的斜率为k,则L′的方程为y-(-3)=k[x-(-3)],即kx-y+3k-3=0,已知圆方程即(x-2)2+(y-2)2=1,圆心O的坐标为(2,2),半径r=1因L′和已知圆相切,则O到L′的距离等于半径r=1 即 整理得12k2-25k+12=0解得k= L′的方程为y+3=(x+3) 即4x-3y+3=0 因L和L′关于x轴对称 故L的方程为4x+3y+3=0.错因:漏解正解:设反射光线为L′,由于L和L′关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A′(-3,-3), 于是L′过A(-3,-3). 设L′的斜率为k,则L′的方程为y-(-3)=k[x-(-3)],即kx-y+3k-3=0, 已知圆方程即(x-2)2+(y-2)2=1,圆心O的坐标为(2,2),半径r=1 因L′和已知圆相切,则O到L′的距离等于半径r=1 即 整理得12k2-25k+12=0 解得k=或k= L′的方程为y+3=(x+3);或y+3=(x+3)。
即4x-3y+3=0或3x-4y-3=0 因L和L′关于x轴对称 故L的方程为4x+3y+3=0或3x+4y-3=0.[例5]求过直线和圆的交点,且满足下列条件之一的圆的方程:(1) 过原点;(2)有最小面积.解:设所求圆的方程是: 即:(1)因为圆过原点,所以,即故所求圆的方程为:.(2) 将圆系方程化为标准式,有:当其半径最小时,圆的面积最小,此时为所求.故满足条件的圆的方程是.点评:(1)直线和圆相交问题,这里应用了曲线系方程,这种解法比较方便;当然也可以待定系数法2)面积最小时即圆半径最小也可用几何意义,即直线与相交弦为直径时圆面积最小.[例6](06年辽宁理科)已知点A(),B()(≠0)是抛物线上的两个动点,O是坐标原点,向量满足||=||.设圆C的方程为(1)证明线段AB是圆C的直径;(2)当圆C的圆心到直线的距离的最小值为时,求的值.解:(1)证明 ∵||=||,∴()2=()2, 整理得:=0 ∴+=0设M()是以线段AB为直径的圆上的任意一点,则=0即 +=0整理得:故线段AB是圆C的直径.(2)设圆C的圆心为C(),则∵,∴又∵+=0 ,=-∴-∵≠0,∴≠0∴=-4 =所以圆心的轨迹方程为设圆心C到直线的距离为d,则=当=时,d有最小值,由题设得=∴=2.四、典型习题导练 1.直线截圆得的劣弧所对的圆心角为 ( ) A. B. C. D.2.已知直线x=a(a>0)和圆(x-1)2+y2=4相切 ,那么a的值是( )A.5 B.4 C.3 D.23. 如果实数x、y满足等式(x-2)2+y2=3,则的最大值为: .4.设正方形ABCD(A、B、C、D顺时针排列)的外接圆方程为x2+y2-6x+a=0(a<9),C、D点所在直线l的斜率为.(1)求外接圆圆心M点的坐标及正方形对角线AC、BD的斜率;(2)如果在x轴上方的A、B两点在一条以原点为顶点,以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程;(3)如果ABCD的外接圆半径为2,在x轴上方的A、B两点在一条以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程.5.如图,已知圆C:(x+4)2+y2=4。
圆D的圆心D在y轴上且与圆C外切圆 D与y轴交于A、B两点,点P为(-3,0).(1)若点D坐标为(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的正切值的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出点Q坐标;如果不存在,说明理由.1。
