好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2019-2020年人教B版数学选修2-3讲义:第1章+1.3+1.3.2 杨辉三角及答案.doc

11页
  • 卖家[上传人]:慢***
  • 文档编号:228262962
  • 上传时间:2021-12-22
  • 文档格式:DOC
  • 文档大小:567KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2019-2020年人教B版数学选修2-3讲义:第1章+1.3+1.3.2 杨辉三角及答案1.3.2 杨辉三角学习目标:1.了解杨辉三角,并探索其中的规律.(难点)2.掌握二项式系数的性质及其应用.(重点)3.掌握“赋值法”并会灵活运用.教材整理1 杨辉三角阅读教材P29,完成下列问题.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C=C+C.1.如图是一个类似杨辉三角的图形,则第n行的首尾两个数均为________.13 35 6 57 11 11 79 18 22 18 9……【解析】 由1,3,5,7,9,…可知它们成等差数列,所以an=2n-1.【答案】 2n-12.如图,由二项式系数构成的杨辉三角中,第________行从左到右第14与第15个数之比为2∶3.11 11 2 11 3 3 11 4 6 4 1……【解析】 设第n行从左到右第14与第15个数之比为2∶3,则3C=2C,即=,解得n=34.【答案】 34教材整理2 二项式系数的性质阅读教材P29后半部分,完成下列问题.1.每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.2.每一行中,与首末两端“等距离”的两个数相等.3.如果二项式的幂指数n是偶数,那么其展开式中间一项T的二项式系数最大;如果n是奇数,那么其展开式中间两项T与T的二项式系数相等且最大.4.二项展开式的二项式系数的和等于2n.1.已知(a+b)n展开式中只有第5项的二项式系数最大,则n等于________.【解析】 因为只有第5项的二项式系数最大,所以+1=5,所以n=8.【答案】 82.已知(ax+1)n的展开式中,二项式系数和为32,则n等于________.【解析】 二项式系数之和为C+C+…+C=2n=32,所以n=5.【答案】 53.(2x-1)10展开式中x的奇次幂项的系数之和为________.【解析】 因为(2x-1)10=a0+a1x+a2x2+…+a10x10,令x=1,得a0+a1+a2+…+a10=1,再令x=-1,得310=a0-a1+a2-a3+…+a10,两式相减,可得a1+a3+…+a9=.【答案】 与“杨辉三角”有关的问题【例1】 如图所示,在“杨辉三角”中斜线AB的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n项和为Sn,求S19的值.【精彩点拨】 由图知,数列中的首项是C,第2项是C,第3项是C,第4项是C,…,第17项是C,第18项是C,第19项是C.【解】 S19=(C+C)+(C+C)+(C+C)+…+(C+C)+C=(C+C+C+…+C)+(C+C+…+C+C)=(2+3+4+…+10)+C=+220=274.“杨辉三角”问题解决的一般方法观察—分析;试验—猜想;结论—证明,要得到杨辉三角中蕴含的诸多规律,取决于我们的观察能力,观察能力有:横看、竖看、斜看、连续看、隔行看,从多角度观察.如表所示:1.如图所示,满足如下条件:①第n行首尾两数均为n;②表中的递推关系类似“杨辉三角”.则第10行的第2个数是________,第n行的第2个数是________.【解析】 由图表可知第10行的第2个数为:(1+2+3+…+9)+1=46,第n行的第2个数为:[1+2+3+…+(n-1)]+1=+1=.【答案】 46 求展开式的系数和【例2】 设(1-2x)2 019=a0+a1x+a2x2+…+a2 019x2 019(x∈R).(1)求a0+a1+a2+…+a2 019的值;(2)求a1+a3+a5+…+a2 019的值;(3)求|a0|+|a1|+|a2|+…+|a2 019|的值.【精彩点拨】 先观察所求式子与展开式各项的特点,利用赋值法求解.【解】 (1)令x=1,得a0+a1+a2+…+a2 019=(-1)2 019=-1.①(2)令x=-1,得a0-a1+a2-…-a2 019=32 019.②①-②得2(a1+a3+…+a2 019)=-1-32 019,∴a1+a3+a5+…+a2 019=.(3)∵Tr+1=C(-2x)r=(-1)rC(2x)r,∴a2k-1<0(k∈N+),a2k>0(k∈N).∴|a0|+|a1|+|a2|+|a3|+…+|a2 019|=a0-a1+a2-a3+…-a2 019=32 019.1.解决二项式系数和问题思维流程2.“赋值法”是解决二项展开式中项的系数常用的方法,根据题目要求,灵活赋给字母不同值.一般地,要使展开式中项的关系变为系数的关系,令x=0可得常数项,令x=1可得所有项系数之和,令x=-1可得偶次项系数之和与奇次项系数之和的差.2.若(3x-1)7=a7x7+a6x6+…+a1x+a0,求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6.【解】 (1)令x=0,则a0=-1;令x=1,得a7+a6+…+a1+a0=27=128,①所以a1+a2+…+a7=129.(2)令x=-1,得-a7+a6-a5+a4-a3+a2-a1+a0=(-4)7,②由①-②得2(a1+a3+a5+a7)=128-(-4)7,∴a1+a3+a5+a7=8 256.(3)由①+②得2(a0+a2+a4+a6)=128+(-4)7,∴a0+a2+a4+a6=-8 128.二项式系数性质的应用[探究问题]1.根据杨辉三角的特点,在杨辉三角同一行中与两个1等距离的项的系数相等,你可以得到二项式系数的什么性质?【提示】 对称性,因为C=C.2.计算,并说明你得到的结论.【提示】 =.当k<时,>1,说明二项式系数逐渐增大;同理,当k>时,二项式系数逐渐减小.3.二项式系数何时取得最大值?【提示】 当n是偶数时,中间的一项取得最大值;当n是奇数时,中间的两项C,C相等,且同时取得最大值.【例3】 已知f(x)=(+3x2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.【精彩点拨】 求二项式系数最大的项,利用性质知展开式中中间项(或中间两项)是二项式系数最大的项;求展开式中系数最大的项,必须将x,y的系数均考虑进去,包括“+”“-”号.【解】 令x=1,则二项式各项系数的和为f(1)=(1+3)n=4n,又展开式中各项的二项式系数之和为2n,由题意知,4n-2n=992.∴(2n)2-2n-992=0,∴(2n+31)(2n-32)=0,∴2n=-31(舍去)或2n=32,∴n=5.(1)由于n=5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是T3=C(x)3(3x2)2=90x6,T4=C(x)2(3x2)3=270x.(2)展开式的通项公式为Tr+1=C3rx(5+2r).假设Tr+1项系数最大,则有∴∴∴≤r≤,∵r∈N,∴r=4.∴展开式中系数最大的项为T5=Cx(3x2)4=405x.1.求二项式系数最大的项,根据二项式系数的性质,当n为奇数时,中间两项的二项式系数最大;当n为偶数时,中间一项的二项式系数最大.2.求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组,解不等式的方法求得.3.已知(a2+1)n展开式中的各项系数之和等于5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值.【解】 由5,得Tr+1=C5-rr=5-rCx,令Tr+1为常数项,则20-5r=0,所以r=4,常数项T5=C=16.又(a2+1)n展开式中的各项系数之和等于2n,由此得到2n=16,n=4.所以(a2+1)4展开式中系数最大项是中间项T3=Ca4=54,所以a=.1.(1+x)2n+1的展开式中,二项式系数最大的项所在项数是(  )A.n,n+1 B.n-1,nC.n+1,n+2 D.n+2,n+3【解析】 该展开式共2n+2项,中间两项为第n+1项与第n+2项,所以第n+1项与第n+2项为二项式系数最大的项.【答案】 C2.已知C+2C+22C+…+2nC=729,则C+C+C的值等于(  )A.64   B.32 C.63   D.31【解析】 C+2C+…+2nC=(1+2)n=3n=729,∴n=6,∴C+C+C=32.【答案】 B3.若(x+3y)n的展开式中各项系数的和等于(7a+b)10的展开式中二项式系数的和,则n的值为________.【解析】 (7a+b)10的展开式中二项式系数的和为C+C+…+C=210,令(x+3y)n中x=y=1,则由题设知,4n=210,即22n=210,解得n=5.【答案】 54.已知(a-x)5=a0+a1x+a2x2+…+a5x5,若a2=80,则a0+a1+a2+…+a5=________.【解析】 (a-x)5展开式的通项为Tr+1=(-1)rCa5-rxr,令r=2,得a2=(-1)2Ca3=80,解得a=2,即(2-x)5=a0+a1x+a2x2+…+a5x5,令x=1,得a0+a1+a2+…+a5=1.【答案】 15.在8的展开式中,求:(1)系数的绝对值最大的项;(2)二项式系数最大的项;(3)系数最大的项;(4)系数最小的项.【解】 Tr+1=C()8-rr=(-1)rC2rx.(1)设第r+1项系数的绝对值最大,则∴解得5≤r≤6.故系数绝对值最大的项是第6项和第7项.(2)二项式系数最大的项为中间项,即为第5项.所以T5=C24x=1 120x-6.(3)由(1)知,展开式中的第6项和第7项系数的绝对值最大,而第6项的系数为负,第7项的系数为正.则系数最大的项为T7=C26x-11=1 792x-11.(4)系数最小的项为T6=(-1)5C25x=-1 792x.- 11 - / 11。

      点击阅读更多内容
      相关文档
      礼仪讲授教案.docx 高考语文一轮复习讲义 第5部分 传统文化阅读·名句名篇默写.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 微任务 作文书写——比天还大的事儿.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组二 真题研练.docx 高考语文一轮复习讲义 第3部分 传统文化阅读 文言文(考点部分) 任务组三 任务四 仔细比对准确提取概括分析文意.docx 高考语文一轮复习讲义 第1部分 语言策略与技能 任务组二 任务五 看准对象因境设辞做到语言得体.docx 高考化学 1.传统文化与STSE 答案解析.docx 高考语文一轮复习讲义现代文阅读 专题16 Ⅱ 真题研练.docx 高考化学 专项拔高抢分练 9.反应热与反应历程.docx 高考化学 专项拔高抢分练 1.传统文化与STSE.docx 高考物理 板块三  气体实验定律和热力学定律的综合应用.docx 高考化学 二题型3 无机化工生产流程题.docx 高考语文一轮复习讲义 第4部分 写作 专题17 Ⅲ 突破二 绘声绘色巧用细节描写生动丰满.docx 高考数学 中档大题练1.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面教材文言文复习综合试卷.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组三 微任务一 聚焦诗意准确选择.docx 高考数学 创新融合4 数列与导数.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面 教材文言文点线面 必修5课文1 归去来兮辞 并序.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 任务二 “三管”齐下美“言”有术文采抢眼养颜.docx 高考数学 满分案例三 立体几何.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.