好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

刘渡舟讲伤寒论录音整理 Title44.ppt

48页
  • 卖家[上传人]:ni****g
  • 文档编号:588884117
  • 上传时间:2024-09-09
  • 文档格式:PPT
  • 文档大小:156KB
  • / 48 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • CS 361A (Advanced Data Structures and Algorithms)(Advanced Data Structures and Algorithms)Lecture 20 (Dec 7, 2005)Data Mining: Association RulesRajeev Motwani(partially based on notes by Jeff Ullman)CS 361A1 Association Rules Overview1.Market Baskets & Association Rules2.Frequent item-sets3.A-priori algorithm4.Hash-based improvements5.One- or two-pass approximations6.High-correlation miningCS 361A2 Association Rules•Two Traditions–DM is science of approximating joint distributions•Representation of process generating data•Predict P[E] for interesting events E–DM is technology for fast counting•Can compute certain summaries quickly•Lets try to use them•Association Rules–Captures interesting pieces of joint distribution–Exploits fast counting technologyCS 361A3 Market-Basket Model•Large Sets–Items A = {A1, A2, …, Am}•e.g., products sold in supermarket–Baskets B = {B1, B2, …, Bn}•small subsets of items in A •e.g., items bought by customer in one transaction•Support – sup(X) = number of baskets with itemset X•Frequent Itemset Problem–Given – support threshold s–Frequent Itemsets – –Find – all frequent itemsetsCS 361A4 Example•Items A = {milk, coke, pepsi, beer, juice}.•BasketsB1 = {m, c, b}B2 = {m, p, j}B3 = {m, b}B4 = {c, j}B5 = {m, p, b}B6 = {m, c, b, j}B7 = {c, b, j}B8 = {b, c}•Support threshold s=3•Frequent itemsets {m}, {c}, {b}, {j}, {m, b}, {c, b}, {j, c}CS 361A5 Application 1 (Retail Stores)•Real market baskets •chain stores keep TBs of customer purchase info•Value?•how typical customers navigate stores•positioning tempting items•suggests “tie-in tricks〞 – e.g., hamburger sale while raising ketchup price•… •High support needed, or no $$’sCS 361A6 Application 2 (Information Retrieval)•Scenario 1–baskets = documents–items = words in documents–frequent word-groups = linked concepts.•Scenario 2–items = sentences–baskets = documents containing sentences–frequent sentence-groups = possible plagiarismCS 361A7 Application 3 (Web Search)•Scenario 1–baskets = web pages–items = outgoing links–pages with similar references  about same topic•Scenario 2–baskets = web pages –items = incoming links–pages with similar in-links  mirrors, or same topicCS 361A8 Scale of Problem•WalMart •sells m=100,000 items•tracks n=1,000,000,000 baskets•Web•several billion pages•one new “word〞 per page•Assumptions•m small enough for small amount of memory per item•m too large for memory per pair or k-set of items•n too large for memory per basket•Very sparse data – rare for item to be in basketCS 361A9 Association Rules•If-then rules about basket contents–{A1, A2,…, Ak}  Aj–if basket has X={A1,…,Ak}, then likely to have Aj•Confidence – probability of Aj given A1,…,Ak•Support (of rule)CS 361A10 ExampleB1 = {m, c, b}B2 = {m, p, j}B3 = {m, b}B4 = {c, j}B5 = {m, p, b}B6 = {m, c, b, j}B7 = {c, b, j}B8 = {b, c}•Association Rule–{m, b}  c–Support = 2–Confidence = 2/4 = 50%CS 361A11 Finding Association Rules•Goal – find all association rules such that–support–confidence •Reduction to Frequent Itemsets Problems–Find all frequent itemsets X–Given X={A1, …,Ak}, generate all rules X-Aj  Aj–Confidence = sup(X)/sup(X-Aj)–Support = sup(X)•Observe X-Aj also frequent  support knownCS 361A12 Computation Model•Data Storage–Flat Files, rather than database system–Stored on disk, basket-by-basket•Cost Measure – number of passes–Count disk I/O only–Given data size, avoid random seeks and do linear-scans•Main-Memory Bottleneck–Algorithms maintain count-tables in memory–Limitation on number of counters–Disk-swapping count-tables is disasterCS 361A13 Finding Frequent Pairs•Frequent 2-Sets–hard case already–focus for now, later extend to k-sets•Naïve Algorithm–Counters – all m(m–1)/2 item pairs–Single pass – scanning all baskets–Basket of size b – increments b(b–1)/2 counters •Failure?–if memory < m(m–1)/2 –even for m=100,000CS 361A14 Montonicity Property•Underlies all known algorithms•Monotonicity Property–Given itemsets–Then •Contrapositive (for 2-sets)CS 361A15 A-Priori Algorithm•A-Priori – 2-pass approach in limited memory•Pass 1–m counters (candidate items in A)–Linear scan of baskets b–Increment counters for each item in b•Mark as frequent, f items of count at least s•Pass 2–f(f-1)/2 counters (candidate pairs of frequent items)–Linear scan of baskets b –Increment counters for each pair of frequent items in b•Failure – if memory < m + f(f–1)/2CS 361A16 Memory Usage – A-PrioriCandidate ItemsPass 1Pass 2Frequent ItemsCandidate PairsMEMORYMEMORYCS 361A17 PCY Idea•Improvement upon A-Priori•Observe – during Pass 1, memory mostly idle•Idea–Use idle memory for hash-table H–Pass 1 – hash pairs from b into H–Increment counter at hash location –At end – bitmap of high-frequency hash locations–Pass 2 – bitmap extra condition for candidate pairs CS 361A18 Memory Usage – PCYCandidate ItemsPass 1Pass 2MEMORYMEMORYHash TableFrequent ItemsBitmapCandidate PairsCS 361A19 PCY Algorithm•Pass 1–m counters and hash-table T–Linear scan of baskets b–Increment counters for each item in b–Increment hash-table counter for each item-pair in b•Mark as frequent, f items of count at least s•Summarize T as bitmap (count > s  bit = 1)•Pass 2–Counter only for F qualified pairs (Xi,Xj):•both are frequent•pair hashes to frequent bucket (bit=1)–Linear scan of baskets b –Increment counters for candidate qualified pairs of items in bCS 361A20 Multistage PCY Algorithm•Problem – False positives from hashing •New Idea–Multiple rounds of hashing–After Pass 1, get list of qualified pairs–In Pass 2, hash only qualified pairs–Fewer pairs hash to buckets  less false positives (buckets with count >s, yet no pair of count >s)–In Pass 3, less likely to qualify infrequent pairs•Repetition – reduce memory, but more passes•Failure – memory < O(f+F)CS 361A21 Memory Usage – Multistage PCYCandidate ItemsPass 1Pass 2Hash Table 1Frequent ItemsBitmapFrequent ItemsBitmap 1Bitmap 2Candidate PairsHash Table 2CS 361A22 Finding Larger Itemsets•Goal – extend to frequent k-sets, k > 2•Monotonicity itemset X is frequent only if X – {Xj} is frequent for all Xj•Idea–Stage k – finds all frequent k-sets–Stage 1 – gets all frequent items–Stage k – maintain counters for all candidate k-sets–Candidates – k-sets whose (k–1)-subsets are all frequent–Total cost: number of passes = max size of frequent itemset•Observe – Enhancements such as PCY all applyCS 361A23 Approximation Techniques•Goal–find all frequent k-sets–reduce to 2 passes–must lose something  accuracy •Approaches–Sampling algorithm–SON (Savasere, Omiecinski, Navathe) Algorithm–Toivonen AlgorithmCS 361A24 Sampling Algorithm•Pass 1 – load random sample of baskets in memory•Run A-Priori (or enhancement)–Scale-down support threshold (e.g., if 1% sample, use s/100 as support threshold)–Compute all frequent k-sets in memory from sample–Need to leave enough space for counters•Pass 2–Keep counters only for frequent k-sets of random sample–Get exact counts for candidates to validate•Error?–No false positives (Pass 2)–False negatives (X frequent, but not in sample)CS 361A25 SON Algorithm•Pass 1 – Batch Processing–Scan data on disk–Repeatedly fill memory with new batch of data–Run sampling algorithm on each batch–Generate candidate frequent itemsets•Candidate Itemsets – if frequent in some batch•Pass 2 – Validate candidate itemsets•Monotonicity PropertyItemset X is frequent overall  frequent in at least one batchCS 361A26 Toivonen’s Algorithm•Lower Threshold in Sampling Algorithm –Example – if sampling 1%, use 0.008s as support threshold–Goal – overkill to avoid any false negatives•Negative Border–Itemset X infrequent in sample, but all subsets are frequent–Example: AB, BC, AC frequent, but ABC infrequent•Pass 2–Count candidates and negative border –Negative border itemsets all infrequent  candidates are exactly the frequent itemsets–Otherwise? – start over!•Achievement? – reduced failure probability, while keeping candidate-count low enough for memoryCS 361A27 Low-Support, High-Correlation•Goal – Find highly correlated pairs, even if rare•Marketing requires hi-support, for dollar value•But mining generating process often based on hi-correlation, rather than hi-support–Example: Few customers buy Ketel Vodka, but of those who do, 90% buy Beluga Caviar–Applications – plagiarism, collaborative filtering, clustering•Observe–Enumerate rules of high confidence–Ignore support completely–A-Priori technique inapplicableCS 361A28 Matrix Representation•Sparse, Boolean Matrix M–Column c = Item Xc; Row r = Basket Br–M(r,c) = 1 iff item c in basket r •Example mcpbjB1={m,c,b}11010B2={m,p,b}10110B3={m,b}10010B4={c,j}01001B5={m,p,j}10101B6={m,c,b,j} 11011B7={c,b,j}01011B8={c,b}01010CS 361A29 Column Similarity•View column as row-set (where it has 1’s) •Column Similarity (Jaccard measure)•Example•Finding correlated columns  finding similar columnsCi Cj 0 1 1 0 1 1 sim(Ci,Cj) = 2/5 = 0.4 0 0 1 1 0 1CS 361A30 Identifying Similar Columns?•Question – finding candidate pairs in small memory•Signature Idea–Hash columns Ci to small signature sig(Ci)–Set of sig(Ci) fits in memory–sim(Ci,Cj) approximated by sim(sig(Ci),sig(Cj))•Naïve Approach–Sample P rows uniformly at random–Define sig(Ci) as P bits of Ci in sample–Problem•sparsity  would miss interesting part of columns•sample would get only 0’s in columnsCS 361A31 Key Observation•For columns Ci, Cj, four types of rowsCiCjA 1 1B 1 0C 0 1D 0 0•Overload notation: A = # of rows of type A•ClaimCS 361A32 Min Hashing•Randomly permute rows•Hash h(Ci) = index of first row with 1 in column Ci •Suprising Property•Why?–Both are A/(A+B+C)–Look down columns Ci, Cj until first non-Type-D row–h(Ci) = h(Cj)  type A rowCS 361A33 Min-Hash Signatures•Pick – P random row permutations •MinHash Signature sig(C) = list of P indexes of first rows with 1 in column C•Similarity of signatures –Fact: sim(sig(Ci),sig(Cj)) = fraction of permutations where MinHash values agree –Observe E[sim(sig(Ci),sig(Cj))] = sim(Ci,Cj) CS 361A34 Example C1 C2 C3R1 1 0 1R2 0 1 1R3 1 0 0R4 1 0 1R5 0 1 0 Signatures S1 S2 S3Perm 1 = (12345) 1 2 1Perm 2 = (54321) 4 5 4Perm 3 = (34512) 3 5 4 Similarities 1-2 1-3 2-3Col-Col 0.00 0.50 0.25Sig-Sig 0.00 0.67 0.00CS 361A35 Implementation Trick•Permuting rows even once is prohibitive•Row Hashing•Pick P hash functions hk: {1,…,n}{1,…,O(n2)} [Fingerprint]•Ordering under hk gives random row permutation•One-pass Implementation•For each Ci and hk, keep “slot〞 for min-hash value•Initialize all slot(Ci,hk) to infinity•Scan rows in arbitrary order looking for 1’s•Suppose row Rj has 1 in column Ci •For each hk, •if hk(j) < slot(Ci,hk), then slot(Ci,hk)  hk(j) CS 361A36 ExampleC1 C2R11 0R2 0 1R3 1 1R4 1 0R5 0 1h(x) = x mod 5g(x) = 2x+1 mod 5h(1) = 11-g(1) = 33-h(2) = 212g(2) = 030h(3) = 312g(3) = 220h(4) = 412g(4) = 420h(5) = 010g(5) = 120C1 slots C2 slots CS 361A37 Comparing Signatures•Signature Matrix S–Rows = Hash Functions–Columns = Columns–Entries = Signatures•Compute – Pair-wise similarity of signature columns•Problem–MinHash fits column signatures in memory–But comparing signature-pairs takes too much time•Technique to limit candidate pairs?–A-Priori does not work–Locality Sensitive Hashing (LSH)CS 361A38 Locality-Sensitive Hashing•Partition signature matrix S–b bands of r rows (br=P)•Band Hash Hq: {r-columns}{1,…,k}•Candidate pairs – hash to same bucket at least once•Tune – catch most similar pairs, few nonsimilar pairsBandsH3CS 361A39 Example•Suppose m=100,000 columns•Signature Matrix–Signatures from P=100 hashes–Space – total 40Mb•Number of column pairs – total 5,000,000,000•Band-Hash Tables–Choose b=20 bands of r=5 rows each–Space – total 8MbCS 361A40 Band-Hash Analysis•Suppose sim(Ci,Cj) = 0.8–P[Ci,Cj identical in one band]=(0.8)^5 = 0.33–P[Ci,Cj distinct in all bands]=(1-0.33)^20 = 0.00035–Miss 1/3000 of 80%-similar column pairs•Suppose sim(Ci,Cj) = 0.4–P[Ci,Cj identical in one band] = (0.4)^5 = 0.01–P[Ci,Cj identical in >0 bands] < 0.01*20 = 0.2–Low probability that nonidentical columns in band collide –False positives much lower for similarities << 40% •Overall – Band-Hash collisions measure similarity•Formal Analysis – later in near-neighbor lecturesCS 361A41 LSH Summary•Pass 1 – compute singature matrix•Band-Hash – to generate candidate pairs•Pass 2 – check similarity of candidate pairs•LSH Tuning – find almost all pairs with similar signatures, but eliminate most pairs with dissimilar signaturesCS 361A42 Densifying – Amplification of 1’s•Dense matrices simpler – sample of P rows serves as good signature •Hamming LSH–construct series of matrices–repeatedly halve rows – ORing adjacent row-pairs–thereby, increase density•Each Matrix–select candidate pairs –between 30–60% 1’s –similar in selected rowsCS 361A43 Example001100100101111CS 361A44 Using Hamming LSH•Constructing matrices–n rows  log2n matrices–total work = twice that of reading original matrix•Using standard LSH–identify similar columns in each matrix–restrict to columns of medium densityCS 361A45 Summary•Finding frequent pairs A-priori  PCY (hashing)  multistage•Finding all frequent itemsets Sampling  SON  Toivonen•Finding similar pairs MinHash+LSH, Hamming LSH•Further Work–Scope for improved algorithms–Exploit frequency counting ideas from earlier lectures–More complex rules (e.g. non-monotonic, negations)–Extend similar pairs to k-sets–Statistical validity issuesCS 361A46 References•Mining Associations between Sets of Items in Massive Databases, R. Agrawal, T. Imielinski, and A. Swami. SIGMOD 1993. •Fast Algorithms for Mining Association Rules, R. Agrawal and R. Srikant. VLDB 1994. •An Effective Hash-Based Algorithm for Mining Association Rules, J. S. Park, M.-S. Chen, and P. S. Yu. SIGMOD 1995. •An Efficient Algorithm for Mining Association Rules in Large Databases , A. Savasere, E. Omiecinski, and S. Navathe. The VLDB Journal 1995. •Sampling Large Databases for Association Rules, H. Toivonen. VLDB 1996. •Dynamic Itemset Counting and Implication Rules for Market Basket Data, S. Brin, R. Motwani, S. Tsur, and J.D. Ullman. SIGMOD 1997. •Query Flocks: A Generalization of Association-Rule Mining, D. Tsur, J.D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov and A. Rosenthal. SIGMOD 1998. •Finding Interesting Associations without Support Pruning, E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D. Ullman, and C. Yang. ICDE 2000. •Dynamic Miss-Counting Algorithms: Finding Implication and Similarity Rules with Confidence Pruning, S. Fujiwara, R. Motwani, and J.D. Ullman. ICDE 2000. CS 361A47 *x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1C4G7JbMePhTkWnZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0C3F6IaLdOgSjVnYq!t*w-z1D4G8JbMeQhTkWoZr%u(x+B2E5H9KcNfRiUmXp#s&v)y0C3F7IaLdPgSjVnYq$t*w-A1D4G8JbNeQhTlWoZr%u(y+B2E6H9KcOfRjUmXp!s&v)z0C4F7IaMdPgSkVnZq$t*x-A1D5G8JbNeQiTlWo#r%u(y+B3E6H9LcOfRjUmYp!s&w)z0C4F7JaMdPhSkVnZq$u*x-A2D5G8KbNfQiTlXo#r%v(y0B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JbMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)y0B3F6IaLdOgSjVmYq!t*w-z1D4G7JbMeQhTkWoZr$u(x+B2E5H9KcNfRiUmXp#s&v)y0C3F7IaLdPgSjVnYq!t*w-A1D4G8JbMeQhTlWoZr%u(x+B2E6H9KcOfRiUmXp!s&v)z0C3F7IaMdPgSkVnYq$t*x-A1D5G8JbNeQiTlWo#r%u(y+B2E6H9LcOfRjUmXp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x-A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$u(x+A2E5H9KcNfRiUlXp#s&v)y0C3F6IaLdPgSjVnYq!t*w-A1D4G8JbMeQhTkWoZr%u(x+B2E5H9KcOfRiUmXp#s&v)z0C3F7IaLdPgSkVnYq$t*w-A1D5G8JbNeQhTlWo#r%u(y+B2E6HPgSjVnYq!t*w-z1D4G8JbMeQhTkWoZr%u(x+B2E5H9KcOfRiUmXp#s&v)z0C3F7IaLdPgSkVnYq$t*w-A1D5G8JbNeQhTlWo#r%u(y+B2E6H9KcOfRjUmXp!s&v)z0C4F7IaMdPgSkVnZq$t*x-A1D5G8KbNeQiTlWo#r%v(y+B3E6H9LcOgRjUmYp!s&w)z1C4F7JaMdPhSkWnZq$u*x-A2D5G8KbNfQiTlXo#r%v(y0B3E6I9LcOgRjVmYp!t&w)z1C4G7JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JbMePhTkWnZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0C3F6IaLdOgSjVnYq!t*w-z1D4G8JbMeQhTkWoZr$u(x+B2E5H9KcNfRiUmXp#s&v)y0C3F7IaLdPgSjVnYq$t*w-A1D4G8JbNeQhTlWoZr%u(y+B2E6H9KcOfRjUmXp!s&v)z0C4F7IaMdPgSkVnYq$t*x-A1D5G8JbNeQiTlWo#r%u(y+B3E6H9LcOfRjUmYp!s&w)z0C4F7JaMdPhSkVnZq$u*x-A2D5G8KbNfQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(C4F7JaMdPhSkVnZq$u*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)y0B3F6IaLdOgSjVmYq!t*w-z1D4G7JbMeQhTkWoZr$u(x+A2E5H9KcNfRiUlXp#s&v)y0C3F6IaLdPgSjVnYq!t*w-A1D4G8JbMeQhTlWoZr%u(x+B2E6H9KcOfRiUmXp!s&v)z0C3F7IaMdPgSkVnYq$t*w-A1D5G8JbNeQhTlWo#r%u(y+B2E6H9LcOfRjUmXp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6H9LcOgRjUmYp!s&w)z1C4F7JaMdPhSkWnZq$u*x-A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$u(x+A2E5H9KcNfRiUlXp#s&v)y0C3F6IaLdOgSjVnYq!t*w-z1D4G8JbMeQhTkWoZr%u(x+B2E5H9KcOfRiUmXp#s&v)z0C3F7IaLdPgSkVn$u(x+A2E5H9KcNfRiUlXp#s%v)y0C3F6IaLdOgSjVnYq!t*w-z1D4G8JbMeQhTkWoZr%u(x+B2E5H9KcOfRiUmXp#s&v)z0C3F7IaLdPgSkVnYq$t*w-A1D4G8JbNeQhTlWoZr%u(y+B2E6H9KcOfRjUmXp!s&v)z0C4F7IaMdPgSkVnZq$t*x-A1D5G8KbNeQiTlWo#r%v(y+B3E6H9LcOfRjUmYp!s&w)z0C4F7JaMdPhSkVnZq$u*x-A2D5G8KbNfQiTlXo#r%v(y0B3E6I9LcOgRjVmYp!t&w)z1C4G7JaMePhSkWnZr$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JbMePhTkWnZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0C3F6IaLdOgSjVmYq!t*w-z1D4G7JbMeQhTkWoZr$u(x+B2E5H9KcNfRiUmXp#s&v)y0C3F7IaLdPgSjVnYq$t*w-A1D4G8JbNeQhTlWoZr%u(x+B2E6H9KcOfRiUmXp!s&v)zG7JbMeQhTkWoZr$u(x+B2E5H9KcNfRiUmXp#s&v)y0C3F7IaLdPgSjVnYq$t*w-A1D4G8JbMeQhTlWoZr%u(x+B2E6H9KcOfRiUmXp!s&v)z0C3F7IaMdPgSkVnYq$t*x-A1D5G8JbNeQiTlWo#r%u(y+B3E6H9LcOfRjUmXp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)y0B3F6IaLdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$u(x+A2E5H9KcNfRiUlXp#s&v)y0C3F6IaLdPgSjVnYq!t*w-A1D4G8JbMeQhTlWoZr%u(x+B2E5H9KcOfRiUmXp#s&v)z0C3F7IaLdPgSkVnYq$t*w-A1D5G8JbNeQhTlWo#r%u(y+B2E6H9LcOfRjUmXp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A1D5G8KbNeQiTlWo#r%v(y+B3IaLdPgSkVnYq$t*w-A1D5G8JbNeQhTlWo#r%u(y+B2E6H9LcOfRjUmXp!s&v)z0C4F7IaMdPgSkVnZq$t*x-A1D5G8KbNeQiTlWo#r%v(y+B3E6H9LcOgRjUmYp!s&w)z1C4F7JaMdPhSkWnZq$u*x-A2D5H8KbNfQiTlXo#r%v(y0B3E6I9LcOgRjVmYp!t&w)z1C4G7JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1C4G7JbMePhTkWnZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0C3F6IaLdOgSjVnYq!t*w-z1D4G8JbMeQhTkWoZr%u(x+B2E5H9KcOfRiUmXp#s&v)y0C3F7IaLdPgSjVnYq$t*w-A1D4G8JbNeQhTlWoZr%u(y+B2E6H9KcOfRjUmXp!s&v)z0C4F7IaMdPgSkVnZq$t*x-A1D5G8JbNeQiTlWo#r%u(y+B3E6H9LcOfRjUmYp!s&w)z0C4F7JQhTlWoZr%u(y+B2E6H9KcOfRjUmXp!s&v)z0C3F7IaMdPgSkVnYq$t*x-A1D5G8JbNeQiTlWo#r%u(y+B3E6H9LcOfRjUmYp!s&w)z0C4F7JaMdPhSkVnZq$u*x-A2D5G8KbNfQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)y0B3F6IaLdOgSjVmYq!t*w-z1D4G7JbMeQhTkWoZr$u(x+B2E5H9KcNfRiUmXp#s&v)y0C3F6IaLdPgSjVnYq!t*w-A1D4G8JbMeQhTlWoZr%u(x+B2E6H9KcOfRiUmXp!s&v)z0C3F7IaMdPgSkVnYq$t*x-A1D5G8JbNeQhTlWo&v)y0C3F6IaLdPgSjVnYq!t*w-A1D4G8JbMeQhTlWoZr%u(x+B2E6H9KcOfRiUmXp!s&v)z0C3F7IaLdPgSkVnYq$t*w-A1D5G8JbNeQhTlWo#r%u(y+B2E6H9LcOfRjUmXp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6H9LcOgRjUmYp!s&w)z1C4F7JaMdPhSkWnZq$u*x-A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$u(x+A2E5H9KcNfRiUlXp#s&v)y0C3F6IaLdOgSjVnYq!t*w-z1D4cNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$u(x+A2E5CS 361A48 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.