
线性规划的常见题型与解法(教师版,题型全,归纳好).doc
21页课题线性规划的常见题型及其解法答案线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有:1.求线性目标函数的最值.2.求非线性目标函数的最值.3.求线性规划中的参数.4.线性规划的实际应用. 本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x,y满足约束条件则目标函数z=2x+3y的取值X围为( )A.[7,23]B.[8,23]C.[7,8]D.[7,25]求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-x+,通过求直线的截距的最值,间接求出z的最值.【解析】画出不等式组表示的平面区域如图中阴影部分所示,由目标函数z=2x+3y得y=-x+,平移直线y=-x知在点B处目标函数取到最小值,解方程组得所以B(2,1),zmin=2×2+3×1=7,在点A处目标函数取到最大值,解方程组得所以A(4,5),zmax=2×4+3×5=23.【答案】A【母题二】变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2,求z的取值X围;(3)设z=x2+y2+6x-4y+13,求z的取值X围.点(x,y)在不等式组表示的平面区域内,=·表示点(x,y)和连线的斜率;x2+y2表示点(x,y)和原点距离的平方;x2+y2+6x-4y+13=(x+3)2+(y-2)2表示点(x,y)和点(-3,2)的距离的平方.【解析】(1)由约束条件作出(x,y)的可行域如图所示.由解得A.由解得C(1,1).由解得B(5,2).∵z==×∴z的值即是可行域中的点与连线的斜率,观察图形可知zmin=×=.(2)z=x2+y2的几何意义是可行域上的点到原点O的距离的平方.结合图形可知,可行域上的点到原点的距离中,dmin=|OC|=,dmax=|OB|=.∴2≤z≤29.(3)z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是:可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,dmin=1-(-3)=4,dmax==8∴16≤z≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有:(1)截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-x+,通过求直线的截距的最值,间接求出z的最值.(2)距离型:形一:如z=,z=,此类目标函数常转化为点(x,y)与定点的距离;形二:z=(x-a)2+(y-b)2,z=x2+y2+Dx+Ey+F,此类目标函数常转化为点(x,y)与定点的距离的平方.(3)斜率型:形如z=,z=,z=,z=,此类目标函数常转化为点(x,y)与定点所在直线的斜率.【提醒】注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x,y满足约束条件则z=2x-y的最大值为( )A.10 B.8C.3 D.2【解析】作出可行域如图中阴影部分所示,由z=2x-y得y=2x-z,作出直线y=2x,平移使之经过可行域,观察可知,当直线经过点A(5,2)时,对应的z值最大.故zmax=2×5-2=8.【答案】B2.(2015·高考某卷)设变量x,y满足约束条件则目标函数z=x+6y的最大值为( )A.3 B.4C.18 D.40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z取得最大值18.【答案】C3.(2013·高考某卷)若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x-y的最小值为( )A.-6B.-2 C.0 D.2【解析】如图,曲线y=|x|与y=2所围成的封闭区域如图中阴影部分,令z=2x-y,则y=2x-z,作直线y=2x,在封闭区域内平行移动直线y=2x,当经过点(-2,2)时,z取得最小值,此时z=2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考某卷)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为( )A.2 B.1C.-D.-【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M与点A重合时直线OM的斜率最小,由直线方程x+2y-1=0和3x+y-8=0,解得A(3,-1),故OM斜率的最小值为-.【解析】C 5.已知实数x,y满足则z=的取值X围.【解】由不等式组画出可行域如图中阴影部分所示,目标函数z==2+的取值X围可转化为点(x,y)与(1,-1)所在直线的斜率加上2的取值X围,由图形知,A点坐标为(,1),则点(1,-1)与(,1)所在直线的斜率为2+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z的取值X围为(-∞,1]∪[2+4,+∞).【答案】(-∞,1]∪[2+4,+∞)6.(2015·某质检)设实数x,y满足不等式组则x2+y2的取值X围是( )A.[1,2]B.[1,4]C.[,2] D.[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC的内部(含边界),x2+y2表示的是此区域内的点(x,y)到原点距离的平方.从图中可知最短距离为原点到直线BC的距离,其值为1;最远的距离为AO,其值为2,故x2+y2的取值X围是[1,4].【答案】B7.(2013·高考卷)设D为不等式组所表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B(1,0)到直线2x-y=0的距离最小,d==,故最小距离为.【答案】8.设不等式组所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x-4y-9=0对称.对于Ω1中的任意点A与Ω2中的任意点B,|AB|的最小值等于( )A.B.4C.D.2【解析】不等式组,所表示的平面区域如图所示,解方程组,得.点A(1,1)到直线3x-4y-9=0的距离d==2,则|AB|的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是( )A.B.C.D.【解析】不等式组表示的平面区域如图所示.由于直线y=kx+过定点.因此只有直线过AB中点时,直线y=kx+能平分平面区域.因为A(1,1),B(0,4),所以AB中点D.当y=kx+过点时,=+,所以k=.【解析】A10.(2014·高考卷)若x,y满足且z=y-x的最小值为-4,则k的值为( )A.2 B.-2C.D.-【解析】D 作出线性约束条件的可行域.当k>0时,如图①所示,此时可行域为y轴上方、直线x+y-2=0的右上方、直线kx-y+2=0的右下方的区域,显然此时z=y-x无最小值.当k<-1时,z=y-x取得最小值2;当k=-1时,z=y-x取得最小值-2,均不符合题意.当-1<k<0时,如图②所示,此时可行域为点A(2,0),B,C(0,2)所围成的三角形区域,当直线z=y-x经过点B时,有最小值,即-=-4⇒k=-.【答案】D11.(2014·高考某卷)x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为( )A.或-1 B.2或C.2或1 D.2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A(0,2),B(2,0),C(-2,-2),则zA=2,zB=-2a,zC=2a-2,要使目标函数取得最大值的最优解不唯一,只要zA=zB>zC或zA=zC>zB或zB=zC>zA,解得a=-1或a=2.法二:目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0∥AB或l0∥AC时符合题意,故a=-1或a=2.【答案】D12.在约束条件下,当3≤s≤5时,目标函数z=3x+2y的最大值的取值X围是( )A.[6,15]B.[7,15]C.[6,8]D.[7,8]【解析】 由得,则交点为B(4-s,2s-4),y+2x=4与x轴的交点为A(2,0),与y轴的交点为C′(0,4),x+y=s与y轴的交点为C(0,s).作出当s=3和s=5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s<4时,可行域是四边形OABC及其内部,此时,7≤zmax<8;当4≤s≤5时,可行域是△OAC′及其内部,此时,zmax=8.综上所述,可得目标函数z=3x+2y的最大值的取值X围是[7,8].【答案】D13.(2015·某一模)设x,y满足约束条件若z=的最小值为,则a的值为________.【解析】∵=1+,而表示过点(x,y)与(-1,-1)连线的斜率,易知a>0,∴可作出可行域,由题意知的最小值是,即min===⇒a=1.【答案】1角度四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A产品x件,B产品y件,则x,y满足约束条件生产利润为z=300x+400y.画出可行域,如图中阴影部分(包含边界)内的整点,显然z=300x+400y在点A处取得最大值,由方程组解得则zmax=300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x-y,所以利润w=5x+6y+3(100-x-y)=2x+3y+300.(2)约束条件为整理得目标函数为w=2x+3y+300.作出可行域.如图所示:初始直线l0:2x+3y=0,平移初始直线经过点A时,w有最大值.由得最优解为A(50,50),所以wmax=550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x-2y-a=0的两侧,则a的取值X围为( )A.(-24,7) B.(-7,24)C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a)·(12+12-a)<0.即(a+7)(a-24)<0,解得-7<a<24.【答案】B。
