
昌都市2023学年高三最后一模数学试题(含解析).doc
21页2023学年高考数学模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.若复数满足(为虚数单位),则其共轭复数的虚部为( )A. B. C. D.2.已知复数z满足,则z的虚部为( )A. B.i C.–1 D.13.已知复数和复数,则为A. B. C. D.4.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为( )A. B.C. D.5.设集合,,则集合A. B. C. D.6.已知,且,则的值为( )A. B. C. D.7.已知,则( )A. B. C. D.28.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( )A. B. C. D.9.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是( )A.1 B.2 C.3 D.410.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是( )A. B. C. D.11.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A.17种 B.27种 C.37种 D.47种12.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填( ).A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.若变量x,y满足:,且满足,则参数t的取值范围为_______.14.命题“对任意,”的否定是 .15.三棱柱中, ,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_____.16.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数f(x)=x-lnx,g(x)=x2-ax.(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图像上任意两点,且满足>1,求实数a的取值范围;(3)若∃x∈(0,1],使f(x)≥成立,求实数a的最大值.18.(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.19.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,,,,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中, ,.20.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.21.(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.22.(10分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、D【答案解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【题目详解】由zi=1﹣i,∴z= ,所以共轭复数=-1+,虚部为1故选D.【答案点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.2、C【答案解析】利用复数的四则运算可得,即可得答案.【题目详解】∵,∴,∴,∴复数的虚部为.故选:C.【答案点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.3、C【答案解析】利用复数的三角形式的乘法运算法则即可得出.【题目详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.【答案点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.4、A【答案解析】由题意可得,即,代入双曲线的渐近线方程可得答案.【题目详解】依题意椭圆与双曲线即的焦点相同,可得:,即,∴,可得,双曲线的渐近线方程为:,故选:A.【答案点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.5、B【答案解析】先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.【题目详解】对于集合A,,解得或,故.对于集合B,,解得.故.故选B.【答案点睛】本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.6、A【答案解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.【题目详解】因为,所以,又,所以,,所以.故选:A.【答案点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.7、B【答案解析】结合求得的值,由此化简所求表达式,求得表达式的值.【题目详解】由,以及,解得..故选:B【答案点睛】本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.8、A【答案解析】建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【题目详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线 , 设点, 所以 由得 ,即 ,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.【答案点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.9、C【答案解析】设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【题目详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【答案点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.10、B【答案解析】根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【题目详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【答案点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.11、C【答案解析】由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【题目详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C【答案点睛】本题考查古典概型,考查补集思想的应用,属于基础题.12、C【答案解析】根据程序框图写出几次循环的结果,直到输出结果是8时.【题目详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环: 第八次循环: 所以框图中①处填时,满足输出的值为8.故选:C【答案点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。
13、【答案解析】根据变量x,y满足:,画出可行域,由,解得直线过定点,直线绕定点旋转与可行域有交点即可,再结合图象利用斜率求解.【题目详解】由变量x,y满足:,画出可行域如图所示阴影部分,由,整理得,由,解得,所以直线过定。












