
高考数学选修知识讲解_充分条件与必要条件件_提高.doc
8页充分条件与必要条件编稿:张希勇 审稿:李霞【学习目标】1.理解充分条件、必要条件、充要条件的定义;2.会求某些简单问题成立的充分条件、必要条件、充要条件;3.会应用充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件表达命题之间的关系.4.能够利用命题之间的关系判定充要关系或进行充要性的证明.【要点梳理】要点一、充分条件与必要条件 充要条件的概念符号与的含义 “若,则”为真命题,记作:;“若,则”为假命题,记作:.充分条件、必要条件与充要条件①若,称是的充分条件,是的必要条件.②如果既有,又有,就记作,这时是的充分必要条件,称是的充要条件.要点诠释:对的理解:指当成立时,一定成立,即由通过推理可以得到.①“若,则”为真命题;②是的充分条件;③是的必要条件以上三种形式均为“”这一逻辑关系的表达.要点二、充分条件、必要条件与充要条件的判断从逻辑推理关系看命题“若,则”,其条件p与结论q之间的逻辑关系①若,但,则是的充分不必要条件,是的必要不充分条件;②若,但,则是的必要不充分条件,是的充分不必要条件;③若,且,即,则、互为充要条件;④若,且,则是的既不充分也不必要条件.从集合与集合间的关系看若p:x∈A,q:x∈B, ①若AB,则是的充分条件,是的必要条件;②若A是B的 真子集,则是的充分不必要条件;③若A=B,则、互为充要条件;④若A不是B的子集且B不是A的子集,则是的既不充分也不必要条件.要点诠释:充要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:①确定哪是条件,哪是结论;②尝试用条件推结论,③再尝试用结论推条件,④最后判断条件是结论的什么条件.要点三、充要条件的证明 要证明命题的条件是结论的充要条件,既要证明条件的充分性(即证原命题成立),又要证明条件的必要性(即证原命题的逆命题成立)要点诠释:对于命题“若,则”①如果是的充分条件,则原命题“若,则”与其逆否命题“若,则”为真命题;②如果是的必要条件,则其逆命题“若,则”与其否命题“若,则”为真命题;③如果是的充要条件,则四种命题均为真命题.【典型例题】类型一:充分条件、必要条件、充要条件的判定例1. “x<-1”是“x2-1>0”的________条件.【解析】,故,但,∴“x<-1”是“x2-1>0”的充分而不必要条件.【点评】判定充要条件的基本方法是定义法,即“定条件——找推式——下结论”;有时需要将条件等价转化后再判定.举一反三:【变式1】指出下列各题中,是的什么条件?(1) : , : ;(2) : ,: 抛物线过原点(3) : 一个四边形是矩形,: 四边形的邻边相等【答案】(1)∵: 或, : ∴且,∴是的必要不充分条件;(2)∵且,∴是的充要条件;(3)∵且,∴是的既不充分条件也不必要条件.【变式2】判断下列各题中是的什么条件.(1):且, :(2):, : .【答案】(1)是的充分不必要条件.∵且时,成立;反之,当时,只要求、同号即可.∴必要性不成立.(2)是的既不充分也不必要条件∵在的条件下才有成立.∴充分性不成立,同理必要性也不成立.【变式3】设甲,乙,丙是三个命题,如果甲是乙的充要条件,丙是乙的充分非必要条件,那么丙是甲的( ).A、充分非必要条件 B、必要非充分条件C、充要条件 D、既不充分也不必要条件【答案】A;【解析】由已知有甲乙,丙乙且乙丙.于是有丙乙甲,且甲丙(否则若甲丙,而乙甲丙,与乙丙矛盾)故丙甲且甲丙,所以丙是甲的充分非必要条件.例2. (2015 天津)设 ,则“ ”是“ ”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件【答案】A【解析】的解集为(1,3),的解集为,故 是的充分不必要条件。
故选:A总结升华】①先对已知条件进行等价转化化简,然后由定义判断;②不等式(解集)表示的条件之间的相互关系可以借助集合间的关系判断.举一反三:【高清课堂:充分条件与必要条件394804例2】【变式1】已知p:0 故选B类型二:充要条件的探求与证明例3. 设x、y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.【解析】(1)充分性:若xy=0,那么①x=0,y≠0;②x≠0,y=0;③x=0,y=0,于是|x+y|=|x|+|y|如果xy>0,即x>0,y>0或x<0,y<0,当x>0,y>0时,|x+y|=x+y=|x|+|y|.当x<0,y<0时,|x+y|=-(x+y)=-x+(-y)=|x|+|y|.总之,当xy≥0时,有|x+y|=|x|+|y|.(2)必要性:由|x+y|=|x|+|y|及x、y∈R,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,|xy|=xy,∴xy≥0.综上可得|x+y|=|x|+|y|成立的充要条件是xy≥0.【点评】充要条件的证明关键是根据定义确定哪是已知条件,哪是结论,然后搞清楚充分性是证明哪一个命题,必要性是证明哪一个命题.判断命题的充要关系有三种方法:(1)定义法;(2)等价法,即利用与;与;与的等价关系,对于条件或结论是不等关系(否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.举一反三:【变式1】已知a, b, c都是实数,证明ac<0是关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件.【答案】(1)充分性:若ac<0,则Δ=b2-4ac>0,方程ax2+bx+c=0有两个相异实根,设为x1, x2, ∵ac<0, ∴x1x2=<0,即x1,x2的符号相反,即方程有一个正根和一个负根.(2)必要性:若方程ax2+bx+c=0有一个正根和一个负根,设为x1,x2,且x1>0, x2<0,则x1x2=<0,∴ac<0综上可得ac<0是方程ax2+bx+c=0有一个正根和一个负根的充要条件.【变式2】求关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件.【答案】(1)a=0时适合.(2)当a≠0时,显然方程没有零根,若方程有两异号的实根,则必须满足;若方程有两个负的实根,则必须满足综上知,若方程至少有一个负的实根,则a≤1;反之,若a≤1,则方程至少有一个负的实根,因此,关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件是a≤1类型三:充要条件的应用例4.已知若p是q的充分不必要条件,求m的取值范围.【答案】【解析】由解得又由解得p是q的充分不必要条件,所以或解得【点评】解决这类参数的取值范围问题,应尽量运用集合法求解,即先化简集合A、B,再由它们的因果关系,得到A与B的包含关系,进而得到相关不等式组,解之即可.举一反三:【变式1】已知命题p:1-c
