
河北省衡水市深县唐奉中学高一数学文下学期期末试卷含解析.docx
7页河北省衡水市深县唐奉中学高一数学文下学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 化简的结果是( )A. B. C. D.参考答案:B【考点】GH:同角三角函数基本关系的运用;GC:三角函数值的符号.【分析】利用同角三角函数基本关系求得,进而根据cos的正负值求得结果.【解答】解:.故选B【点评】本题主要考查了同角三角函数基本关系的应用,属基础题.2. 函数的单调增区间与值域相同,则实数的取值为( ) k&s#5u A. B. C. D.参考答案:B略3. 为了得到函数的图象,只需把正弦曲线上所有点 A.向右平移个单位长度,再将所得图象上的点横坐标缩短为原来的倍,纵坐标不变B.向左平移个单位长度,再将所得图象上的点横坐标缩短为原来的倍,纵坐标不变C.向右平移个单位长度,再将所得图象上的点横坐标伸长到原来的2倍,纵坐标不变D.向左平移个单位长度,再将所得图象上的点横坐标缩短为原来的2倍,纵坐标不变参考答案:A4. 已知三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,则该三棱锥的外接球的半径为( )A.3 B.6 C.36 D.9参考答案:A【考点】球内接多面体;棱锥的结构特征;球的体积和表面积.【分析】三棱锥扩展为四棱柱(长方体),两个几何体的外接球是同一个球,求出四棱锥的对角线的长度就是外接球的直径,即可求解半径.【解答】解:三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,则该三棱锥的外接球,就是三棱锥扩展为长方体的外接球,所以长方体的对角线的长度为: =6,所以该三棱锥的外接球的半径为:3.故选A.5. 已知函数f(x)=,满足对任意的x1≠x2都有<0成立,则a的取值范围是( )A.(0,] B.(0,1) C.上的函数f(x)满足:对于任意的x1,x2∈,都有f(x1+x2)=f(x1)+f(x2)﹣2014,且x>0时,有f(x)>2014,f(x)的最大值、最小值分别为M,N,则M+N的值为( )A.2014 B.2015 C.4028 D.4030参考答案:C【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】根据抽象函数的表达式,利用函数单调性的性质即可得到结论.【解答】解:∵对于任意的x1,x2∈,都有f(x1+x2)=f(x1)+f(x2)﹣2014,∴令x1=x2=0,得f(0)=2014,再令x1+x2=0,将f(0)=2014代入可得f(x)+f(﹣x)=4028.设x1<x2,x1,x2∈,则x2﹣x1>0,f(x2﹣x1)=f(x2)+f(﹣x1)﹣2014,∴f(x2)+f(﹣x1)﹣2014>2014.又∵f(﹣x1)=4028﹣f(x1),∴可得f(x2)>f(x1),即函数f(x)是递增的,∴f(x)max=f,f(x)min=f(﹣2015).又∵f+f(﹣2015)=4028,∴M+N的值为4028.故选:C.【点评】本题主要考查函数值的计算,利用赋值法,证明函数的单调性是解决本题的关键,综合性较强,有一定的难度.6. 下列各图中,可表示函数y=(x)的图象的只可能是 ( )参考答案:D7. 若正项数列{an}的前n项和为Sn,满足,则( )A. B. C. D. 参考答案:A【分析】利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。
详解】当时,解得,由于为正项数列,故,由,所以,由 ,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式 故答案选A【点睛】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性8. 函数,则下列关系中一定正确的是 A. B. C. D. 参考答案:C9. 函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为( )A. B. C. D.参考答案:C10. 函数的定义域为( )A. B. C. D.参考答案:D二、 填空题:本大题共7小题,每小题4分,共28分11. 已知点到直线距离为,则=____________.参考答案:1或-3略12. 已知函数,.当时,若存在,使得,则的取值范围为__________.参考答案:见解析,开口朝下,,若使,则,即,∴或,综上:.13. 某校为了解高一学生寒假期间的阅读情况,抽查并统计了100名同学的某一周阅读时间,绘制了频率分布直方图(如图),那么这100名学生中阅读时间在小时内的人数为_____.参考答案: 54 14. 给出下列五个命题:①函数的一条对称轴是;②函数的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则,其中以上四个命题中正确的有____________(填写正确命题前面的序号)参考答案:(1)(2)略15. 已知函数,给出下列命题:①若,则;②对于任意的,,,则必有;③若,则;④若对于任意的,,,则,其中所有正确命题的序号是_____.参考答案:见解析解:,对于①,当时,,故①错误.对于②,在上单调递减,所以当时,即:,故②正确.对于③表示图像上的点与原点连线的斜率,由的图像可知,当时,,即:,故③错误.对于④,由得图像可知,,故④正确.综上所述,正确命题的序号是②④.16. 直线被圆截得的弦长为 .参考答案:17. 若函数,则方程f(x)=2所有的实数根的和为__________.参考答案:(1),(2),三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 现需要设计一个仓库,由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD - A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若,,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,当PO1为多少时,下部的正四棱柱侧面积最大,最大面积是多少?参考答案:(1)(2)当为时,下部分正四棱柱侧面积最大,最大面积是.【分析】(1)直接利用棱锥和棱柱的体积公式求解即可;(2)设,下部分的侧面积为,由已知正四棱柱的高是正四棱锥的高的4倍.可以求出的长,利用正四棱锥的侧棱长,结合勾股定理,可以求出的长,由正方形的性质,可以求出的长,这样可以求出的表达式,利用配方法,可以求出的最大值.【详解】(1),则,.,故仓库的容积为.(2)设,下部分的侧面积为,则,,,,设,当即时,,答:当为时,下部分正四棱柱侧面积最大,最大面积是.【点睛】本题考查了棱锥、棱柱的体积计算,考查了求正四棱柱侧面积最大值问题,考查了配方法,考查了数学运算能力.19. 已知函数f(x)=|x﹣a|,g(x)=ax,(a∈R).(1)若a=1,求方程f(x)=g(x)的解;(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;(3)若a>0,记F(x)=g(x)f(x),试求函数y=F(x)在区间[1,2]上的最大值.参考答案:【考点】函数的最值及其几何意义;分段函数的应用.【分析】(1)代值计算即可.(2)分三种情况加以讨论:当a>0时,将方程f(x)=g(x)两边平方,得方程(x﹣a)2﹣a2x2=0在(0,+∞)上有两解,构造新函数h(x)=(a2﹣1)x2+2ax﹣a2,通过讨论h(x)图象的对称轴方程和顶点坐标,可得0<a<﹣1;当a<0时,用同样的方法得到﹣1<a<0;而当a=0时代入函数表达式,显然不合题意,舍去.最后综合实数a的取值范围;(3)F(x)=f(x)?g(x)=ax|x﹣a|,根据实数a与区间[1,2]的位置关系,分4种情况加以讨论:①当0<a≤1时,③当2<a≤4时,④当a>4时,最后综上所述,可得函数y=F(x)在区间[1,2]上的最大值的结论.【解答】解:(1)当a=1时,|x﹣1|=x,即x﹣1=x或x﹣1=﹣x,解得x=;(2)当a>0时,|x﹣a|﹣ax=0有两解,等价于方程(x﹣a)2﹣a2x2=0在(0,+∞)上有两解,即(a2﹣1)x2+2ax﹣a2=0在(0,+∞)上有两解,令h(x)=(a2﹣1)x2+2ax﹣a2,因为h(0)=﹣a2<0,所以,故0<a<1;同理,当a<0时,得到﹣1<a<0;当a=0时,f(x)=|x|=0=g(x),显然不合题意,舍去.综上可知实数a的取值范围是(﹣1,0)∪(0,1).(3)令F(x)=f(x)?g(x)①当0<a≤1时,则F(x)=a(x2﹣ax),对称轴x=,函数在[1,2]上是增函数,所以此时函数y=F(x)的最大值为4a﹣2a2.②当1<a≤2时,F(x)=,对称轴x=,所以函数y=F(x)在(1,a]上是减函数,在[a,2]上是增函数,F(1)=a2﹣a,F(2)=4a﹣2a2,1)若F(1)<F(2),即1<a<,此时函数y=F(x)的最大值为4a﹣2a2;2)若F(1)≥F(2),即,此时函数y=F(x)的最大值为a2﹣a.③当2<a≤4时,F(x)=﹣a(x2﹣ax)对称轴x=,此时F(x)max=F()=,④当a>4时,对称轴x=,此时F(x)max=F(2)=2a2﹣4a.综上可知,函数y=F(x)在区间[1,2]上的最大值.20. 已知全集,集合,.(1)当时,求与.(2)若,求实数的取值范围.参考答案:().().,()当时,,或,故..()∵,∴,当时,,∴,当时,即时,且,∴,∴.综上所述,.21. 已知f(x)=2+log3x,x∈[1,9]求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.参考答案:解析:由 ,故当时,22. 已知函数f(x)=lg(3+x)+lg(3﹣x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性.参考答案:【考点】函数奇偶性的判断;函数的定义域及其求法.【专题】函数的性质及应用.【分析】(1)欲使f(x)有意义,须有,解出即可;(2)利用函数奇偶性的定义即可作出判断;【解答】解:(1)依题意有,解得﹣3<x<3,所以函数f(x)的定义域是{x|﹣3<x<3}.(2)由(1)知f(x)定义域关于原点对称,∵f(x)=lg(3+x)+lg(3﹣x)=lg(9﹣x2),∴f(﹣x)=lg(9﹣(﹣x)2)=lg(9﹣x2)=f(x),∴函数f(x)为偶函数.【点评】本题考查函数定义域的求解及函数奇偶性的判断,属基础题,定义是解决函数奇偶性的基本方法.。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






