
湖北省荆州开发区滩桥中学2022年高三六校第一次联考数学试卷(含答案解析).doc
16页2022高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为( )A. B. C. D.2.的展开式中含的项的系数为( )A. B.60 C.70 D.803.已知是虚数单位,则复数( )A. B. C.2 D.4.年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B. C. D.5.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么( )A. B. C. D.6.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A. B. C. D.7.若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )A. B. C. D.8.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是( )A. B. C. D.9.观察下列各式:,,,,,,,,根据以上规律,则( )A. B. C. D.10.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A.甲 B.乙 C.丙 D.丁11.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )A. B. C. D.12.在中,,,,为的外心,若,,,则( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.的展开式中二项式系数最大的项的系数为_________(用数字作答).14.如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,,则双曲线的离心率是______.15.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为____.16.若函数为偶函数,则________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)在中,角A,B,C的对边分别为a,b,c,且.(1)求B;(2)若的面积为,周长为8,求b.18.(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.19.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线和圆的普通方程;(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.20.(12分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.21.(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.D【答案解析】根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率.【题目详解】由题意可知,代入得:,代入双曲线方程整理得:,又因为,即可得到,故选:D.【答案点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题.2.B【答案解析】展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【题目详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为.故选:B【答案点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.3.A【答案解析】根据复数的基本运算求解即可.【题目详解】.故选:A【答案点睛】本题主要考查了复数的基本运算,属于基础题.4.B【答案解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.5.D【答案解析】由得,分别算出和的值,从而得到的值.【题目详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.【答案点睛】本小题主要考查对数运算,属于基础题.6.A【答案解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【题目详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数 在上是减函数 ,即对于恒成立 在上恒成立,即的取值范围为:本题正确选项:【答案点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.7.B【答案解析】由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【题目详解】由题可知.所以令,得令,得故选:B【答案点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.8.B【答案解析】先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【题目详解】令,则当时,,又,所以为偶函数, 从而等价于,因此选B.【答案点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.9.B【答案解析】每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算.【题目详解】以及数列的应用根据题设条件,设数字,,,,,,,构成一个数列,可得数列满足,则,,.故选:B.【答案点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.10.C【答案解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【题目详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【答案点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.11.A【答案解析】=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.12.B【答案解析】首先根据题中条件和三角形中几何关系求出,,即可求出的值.【题目详解】如图所示过做三角形三边的垂线,垂足分别为,,,过分别做,的平行线,,由题知,则外接圆半径,因为,所以,又因为,所以,,由题可知,所以,,所以.故选:D.【答案点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.二、填空题:本题共4小题,每小题5分,共20分。
13.5670【答案解析】根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【题目详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670【答案点睛】本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档题.14.【答案解析】根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.【题目详解】∵,∴为中点,,∵,∴垂直平分,∴,即,∴,,即.故答案为:【答案点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.15.【答案解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以16.【答案解析】二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【题目详解】由为偶函数,知其一次项的系数为0,所以,,所以,故答案为:-5【答案点睛】本题考查由奇偶性求解参数,求函数值,属于基础题三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(1);(2)【答案解析】(1)通过正弦定理和内角和定理化简,再通过二倍角公式即可求出;(2)通过三角形面积公式和三角形的周长为8,求出b的表达式后即可求出b的值.【题目详解】(1)由三角形内角和定理及诱导公式,得,结合正弦定理,得,由及二倍角公式,得,即,故;(2)由题设,得,从而,由余弦定理,得,即,又,所以,解得.【答案点睛】本题综合考查了正余弦定理,倍角公式,三角形面积公式,属于基础题.18.(1);(2).【答案解析】(1)由可得出,两式作差可求得数列的通项公式;(2)求得,利用数列的单调性的定义判断数列的单调性,由此可求得数列的最小项的值.【题目详解】(1)对任意的,由得,两式相减得,因此,数列的通项公式为;(2)由(1)得,则.当时,,即,;当时,,即,.所以,数列的最小项为.【答案点睛】本题考查利用与的关系求通项,同时也考查了利用数列的单调性求数列中的最小项,考查推理能力与计算能力,属于。
