
2022第二十二届“华杯赛”决赛初一年级组A试题及答案.docx
3页2022第二十二届“华杯赛”决赛初一年级组A试题及答案 第二十二届华罗庚金杯少年数学邀请赛 决赛试题(初中一年级组) (时间: 2022年3月11日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1.数轴上10个点所表示的数分别为,1a ,2a ,10a , 且当i 为奇数时, 2=-1+i i a a , 当i 为偶数时, 1=-1+i i a a , 那么= -610a a . 2.如右图, △ABC , △AEF 和△BDF 均为正三角形, 且 △ABC , △AEF 的边长分别为3和4, 则线段DF 长度的最大值等于 . 3.如下的代数和1017?1010++1+-2022?1-+-2022?2+2022?1- )()(m m m 的个位数字是 , 其中m 是正整数. 4.已知2022<<2022x . 设[]x 表示不大于x 的最大整数, 定义{}[]x x x -=.如果{}[]x x ?是整数, 则满足条件的所有x 的和等于 . 5.设x , y , z 是自然数, 则满足36=+++222xy z y x 的x , y , z 有 组. 6.设p , q ,q p 1-3, p q 1-都是正整数, 则22+q p 的最大值等于 . 7.右图是A , B , C , D , E 五个防区和连接这些防区的10条公路的示 意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换 防, 且换防时, 每一支部队只能经过一条公路, 换防后每一个 防区仍然只驻有一支部队, 则共有种不同的换防方式. 第二十二届华罗庚金杯少年数学邀请赛 决赛试题(初中一年级组) (时间: 2022年3月11日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1.数轴上10个点所表示的数分别为,1a ,2a ,10a , 且当i 为奇数时, 2=-1+i i a a , 当i 为偶数时, 1=-1+i i a a , 那么= -610a a . 2.如右图, △ABC , △AEF 和△BDF 均为正三角形, 且 △ABC , △AEF 的边长分别为3和4, 则线段DF 长度的最大值等于 . 3.如下的代数和1017?1010++1+-2022?1-+-2022?2+2022?1- )()(m m m 的个位数字是 , 其中m 是正整数. 4.已知2022<<2022x . 设[]x 表示不大于x 的最大整数, 定义{}[]x x x -=.如果{}[]x x ?是整数, 则满足条件的所有x 的和等于 . 5.设x , y , z 是自然数, 则满足36=+++222xy z y x 的x , y , z 有 组. 6.设p , q ,q p 1-3, p q 1-都是正整数, 则22+q p 的最大值等于 . 7.右图是A , B , C , D , E 五个防区和连接这些防区的10条公路的示 意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换 防, 且换防时, 每一支部队只能经过一条公路, 换防后每一个 防区仍然只驻有一支部队, 则共有种不同的换防方式. 。
