
高考数学理一轮总复习必修部分开卷速查54抛物线(含解析)新人教A版.doc
7页开卷速查(五十四) 抛物线A级 基础巩固练1.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|=( )A.2∶ B.1∶2C.1∶ D.1∶3 解析:射线FA的方程为x+2y-2=0(x≥0).如图所示,知tanα=,∴sinα=.过M点作准线的垂线,交准线于点G,由抛物线的定义知|MF|=|MG|,∴==sinα==.故选C.答案:C2.O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为( )A.2 B.2C.2 D.4解析:利用|PF|=xP+=4,可得xP=3,∴yP=±2.∴S△POF=|OF|·|yP|=2.故选C项.答案:C3.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x解析:设点M的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+=5,则x0=5-.又点F的坐标为,所以以MF为直径的圆的方程为(x-x0)·+(y-y0)y=0.将x=0,y=2代入得px0+8-4y0=0,即-4y0+8=0,所以y0=4.由y=2px0,得16=2p,解之得p=2,或p=8.所以C的方程为y2=4x或y2=16x.故选C.答案:C4.点M(5,3)到抛物线y=ax2的准线的距离为6,那么抛物线的方程是( )A. y=12x2B. y=12x2或y=-36x2C. y=-36x2D. y=x2或y=-x2解析:将y=ax2化为x2=y,当a>0时,准线y=-,由已知得3+=6,∴=12,∴a=.当a<0时,准线y=-,由已知得|3+|=6,∴a=-或a=(舍).∴抛物线方程为y=或y=-x2,故选D.答案:D5.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )A.y2=±4x B.y2=±8xC.y2=4x D.y2=8x解析:由抛物线方程知焦点F, ∴直线l为y=2,与y轴交点A.∴S△OAF=·|OA|·|OF|=·|-|·||==4.∴a=±8.∴抛物线方程为y2=±8x,故选B.答案:B6.已知直线y=k(x-m)与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,OD⊥AB于D.若动点D的坐标满足方程x2+y2-4x=0,则m=( )A.1 B.2C.3 D.4解析:设点D(a,b),则由OD⊥AB于D,得则b=-,a=-bk;又动点D的坐标满足方程x2+y2-4x=0,即a2+b2-4a=0,将a=-bk代入上式,得b2k2+b2+4bk=0,即bk2+b+4k=0,--+4k=0,又k≠0,则(1+k2)(4-m)=0,因此m=4,故选D.答案:D7.已知动圆圆心在抛物线y2=4x上,且动圆恒与直线x=-1相切,则此动圆必过定点__________.解析:因为动圆的圆心在抛物线y2=4x上,且x=-1是抛物线y2=4x的准线,所以由抛物线的定义知,动圆一定过抛物线的焦点(1,0).答案:(1,0)8.过抛物线y2=4x的焦点F的直线交y轴于点A,抛物线上有一点B满足=+ (O为坐标原点),则△BOF的面积是__________.解析:由题可知F(1,0),可设过焦点F的直线方程为y=k(x-1)(可知k存在),则A(0,-k),∴B(1,-k),由点B在抛物线上,得k2=4,k=±2,即B(1,±2),S△BOF=·|OF|·|yB|=×1×2=1.答案:19.已知直线y=k(x-2)(k>0)与抛物线y2=8x相交于A,B两点,F为抛物线的焦点,若|FA|=2|FB|,则k的值为__________.解析:直线y=k(x-2)恰好经过抛物线y2=8x的焦点F(2,0),由可得ky2-8y-16k=0,因为|FA|=2|FB|,所以yA=-2yB,则yA+yB=-2yB+yB=,所以yB=-,yA·yB=-16,所以-2y=-16,即yB=±2,又k>0,故k=2.答案:210.已知抛物线E:x2=2py(p>0),直线y=kx+2与E交于A、B两点,且·=2,其中O为原点.(1)求抛物线E的方程;(2)点C坐标为(0,-2),记直线CA,CB的斜率分别为k1,k2,证明:k+k-2k2为定值.解析:(1)将y=kx+2代入x2=2py,得x2-2pkx-4p=0.其中Δ=4p2k2+16p>0,设A(x1,y1),B(x2,y2),则x1+x2=2pk,x1x2=-4p.·=x1x2+y1y2=x1x2+·=-4p+4.由已知,-4p+4=2,p=.所以抛物线E的方程x2=y.(2)由(1)知,x1+x2=k,x1x2=-2.k1====x1-x2,同理k2=x2-x1,所以k+k-2k2=2(x1-x2)2-2(x1+x2)2=-8x1x2=16.B级 能力提升练11.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B.C.2 D.-1解析:由题意知,抛物线的焦点为F(1,0).设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.答案:D12.已知抛物线y2=2px的焦点F与双曲线-=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上,且|AK|=|AF|,则△AFK的面积为( )A.4 B.8C.16 D.32解析:由题可知抛物线焦点坐标为F(4,0).过点A作直线AA′垂直于抛物线的准线,垂足为A′,根据抛物线定义知,|AA′|=|AF|,在△AA′K中,|AK|=|AA′|,故∠KAA′=45°,所以直线AK的倾斜角为45°,直线AK的方程为y=x+4,代入抛物线方程y2=16x得y2=16(y-4),即y2-16y+64=0,解得y=8.所以△AFK为直角三角形,故△AFK的面积为×8×8=32.答案:D13.如图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.解析:(1)由已知条件,可设抛物线的方程为y2=2px(p>0).∵点P(1,2)在抛物线上,∴22=2p×1,解得p=2.故所求抛物线的方程是y2=4x,准线方程是x=-1.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB,则kPA=(x1≠1),kPB=(x2≠1),∵PA与PB的斜率存在且倾斜角互补,∴kPA=-kPB.由A(x1,y1),B(x2,y2)均在抛物线上,得y=4x1,①y=4x2,②∴=-,∴y1+2=-(y2+2).∴y1+y2=-4.由①-②得,y-y=4(x1-x2),∴kAB===-1(x1≠x2).14.[2014·安徽]如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.解析:(1)设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由得A1,由得A2.同理可得B1,B2.所以==2p1,==2p2.故=,所以A1B1∥A2B2.(2)由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此=2.又由(1)中的=知=.故=.。
