
2023学年广东省高州市九校联考数学九上期末监测试题含解析.doc
25页2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题(每题4分,共48分)1.如图,点A,B,C,D都在上,OA⊥BC,∠AOB=40°,则∠CDA的度数为( )A.40° B.30° C.20° D.15°2.已知反比例函数y=2x﹣1,下列结论中,不正确的是( )A.点(﹣2,﹣1)在它的图象上B.y随x的增大而减小C.图象在第一、三象限D.若x<0时,y随x的增大而减小3.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点 的坐标是( )A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)4.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A.65 B.65 C.2 D.5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A. B. C. D.6.下列事件中,属于必然事件的是( )A.明天我市下雨B.抛一枚硬币,正面朝上C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球7.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( ).A.3个都是黑球 B.2个黑球1个白球C.2个白球1个黑球 D.至少有1个黑球8.如图,在平面直角坐标系中,菱形的边在轴的正半轴上,反比例函数的图象经过对角线的中点和顶点.若菱形的面积为12,则的值为( ).A.6 B.5 C.4 D.39.如图,中,,则的值为( )A. B. C. D.10.下列一元二次方程,有两个不相等的实数根的是( )A. B.C. D.11.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为( )A.800sinα米 B.800tanα米 C.米 D.米12.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①② B.②③ C.②④ D.①③④二、填空题(每题4分,共24分)13.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.14.在中,,,,圆在内自由移动.若的半径为1,则圆心在内所能到达的区域的面积为______.15.写出一个二次函数关系式,使其图象开口向上_______.16.已知函数的图象如图所示,若直线与该图象恰有两个不同的交点,则的取值范围为_____.17.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.18.是关于的一元二次方程的一个根,则___________三、解答题(共78分)19.(8分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.20.(8分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)21.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.22.(10分)已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=–1时,y=1.求x=-时,y的值.23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交 线段CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在 个满足题意的点.24.(10分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.25.(12分)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?26.如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.参考答案一、选择题(每题4分,共48分)1、C【分析】先根据垂径定理由OA⊥BC得到,然后根据圆周角定理计算即可.【详解】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×40°=20°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.2、B【分析】由反比例函数的关系式,可以判断出(-2,-1)在函数的图象上,图象位于一、三象限,在每个象限内y随x的增大而减小,进而作出判断,得到答案.【详解】A、把(﹣2,﹣1)代入y=2x﹣1得:左边=右边,故本选项正确,不符合题意;B、k=2>0,在每个象限内,y随x的增大而减小,故本选项错误,符合题意;C、k=2>0,图象在第一、三象限,故本选项正确,不符合题意;D、若x<0时,图象在第三象限内,y随x的增大而减小,故本选项正确,不符合题意;不正确的只有选项B,故选:B.【点睛】考查反比例函数的图象和性质,特别注意反比例函数的增减性,当k>0,在每个象限内,y随x的增大而减小;当k<0,在每个象限内,y随x的增大而增大.3、C【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点在x轴上,O=2,所以,(﹣2,0),②若逆时针旋转,则点到x轴的距离为10,到y轴的距离为2,所以,(2,10),综上所述,点的坐标为(2,10)或(﹣2,0).故选:C.【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.4、C【分析】由样本平均值的计算公式列出关于a的方程,解出a,再利用样本方差的计算公式求解即可.【详解】由题意知(a+0+1+2+3)÷5=1,解得a=-1,∴样本方差为故选:C.【点睛】本题考查样本的平均数、方差求法,属基础题,熟记样本的平均数、方差公式是解答本题的关键5、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.6、D【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件,故选:D.【点睛】本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.7、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选D.【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.8、C【解析】首先设出A、C点的坐标,再根据菱形的性质可得D点坐标,再根据D点在反比例函数上,再结合面积等于12,解方程即可.【详解】解:设点的坐标为,点的坐标为,则,点的坐标为,∴,解得,,故选:C.【点睛】本题主要考查反比例函数和菱形的性质,关键在于菱形的对角线相互平分且垂直.9、D【解析】根据相似三角形的判定和性质,即可得到答案.【详解】解:∵,∴∽,∴;故选:D.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.10、B【分析】分别计算出各选项中方程根的判别式的值,找出大于0的选项即可得答案.【详解】A.方程x2+6x+9=0中,△=62-4×1×9=0,故方程有两个相等的实数根,不符合题意,B.方程中,△=(-1)2-4×1×0=1>0,故方程有两个不相等的实数根,符合题意,C.方程可变形。












