
榆次区高级中学2018-2019学年上学期高二数学12月月考试题含解析.doc
15页榆次区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=( ) A.30° B.60° C.120° D.150°2. 向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是( ) A. B. C. D. 3. 如果a>b,那么下列不等式中正确的是( )A. B.|a|>|b| C.a2>b2 D.a3>b34. 抛物线y=4x2的焦点坐标是( ) A.(0,1) B.(1,0) C. D.5. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为( )A.4 B.5 C.6 D.7 6. 如图,程序框图的运算结果为( )A.6 B.24 C.20 D.120 7. 若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )A.﹣2<t<﹣ B.﹣2<t≤﹣ C.﹣2≤t≤﹣ D.﹣2≤t<﹣8. 方程x= 所表示的曲线是( ) A.双曲线 B.椭圆 C.双曲线的一部分 D.椭圆的一部分 9. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁UA)∪B为( ) A.{0,1,2,4} B.{0,1,3,4} C.{2,4} D.{4} 10.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( ) A. B. C. D.11.已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.为使m∥β,应选择下面四个选项中的( )A.①④ B.①⑤ C.②⑤ D.③⑤12.函数存在与直线平行的切线,则实数的取值范围是( )A. B. C. D. 【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.二、填空题13.若函数y=ln(﹣2x)为奇函数,则a= .14.已知集合M={x||x|≤2,x∈R},N={x∈R|(x﹣3)lnx2=0},那么M∩N= .15.已知a=(cosx﹣sinx)dx,则二项式(x2﹣)6展开式中的常数项是 . 16.若函数f(x)=x2﹣2x(x∈[2,4]),则f(x)的最小值是 . 17.已知是定义在上函数,是的导数,给出结论如下:①若,且,则不等式的解集为; ②若,则;③若,则;④若,且,则函数有极小值;⑤若,且,则函数在上递增.其中所有正确结论的序号是 .18.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(﹣2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③在x=2时,f(x)取得极大值;④在x=3时,f(x)取得极小值.其中正确的是 . 三、解答题19.已知函数f(x)=log2(x﹣3), (1)求f(51)﹣f(6)的值; (2)若f(x)≤0,求x的取值范围. 20.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=ex,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由. 21.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣. (Ⅰ)求sin∠BAD的值; (Ⅱ)求AC边的长. 22.(本小题满分10分)选修4-5:不等式选讲已知函数.(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值.【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.23.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.24.已知x2﹣y2+2xyi=2i,求实数x、y的值. 榆次区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A 【解析】解:∵sinC=2sinB,∴c=2b, ∵a2﹣b2=bc,∴cosA=== ∵A是三角形的内角 ∴A=30° 故选A. 【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题. 2. 【答案】 A 【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系. 如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半. 对照选项知,只有A符合此要求. 故选A. 【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题. 3. 【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题. 4. 【答案】C 【解析】解:抛物线y=4x2的标准方程为 x2=y,p=,开口向上,焦点在y轴的正半轴上, 故焦点坐标为(0,), 故选C. 【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键. 5. 【答案】A 解析:模拟执行程序框图,可得S=0,n=0满足条,0≤k,S=3,n=1满足条件1≤k,S=7,n=2满足条件2≤k,S=13,n=3满足条件3≤k,S=23,n=4满足条件4≤k,S=41,n=5满足条件5≤k,S=75,n=6…若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,则输入的整数k的最大值为4.故选:6. 【答案】 B【解析】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键. 7. 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),则由图象知A,B两点在直线两侧和在直线上即可,即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,即(3t+4)(2t+4)≤0,解得﹣2≤t≤﹣,即实数t的取值范围为是[﹣2,﹣],故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题. 8. 【答案】C 【解析】解:x=两边平方,可变为3y2﹣x2=1(x≥0), 表示的曲线为双曲线的一部分; 故选C. 【点评】本题主要考查了曲线与方程.解题的过程中注意x的范围,注意数形结合的思想. 9. 【答案】A 【解析】解:∵U={0,1,2,3,4},集合A={0,1,3}, ∴CUA={2,4}, ∵B={0,1,4}, ∴(CUA)∪B={0,1,2,4}. 故选:A. 【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答. 10.【答案】 D 【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为, 故两人都击不中的概率为(1﹣)(1﹣)=, 故目标被击中的概率为1﹣=, 故选:D. 【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题. 11.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用. 12.【答案】D【解析】因为,直线的的斜率为,由题意知方程()有解,因为,所以,故选D.二、填空题13.【答案】 4 . 【解析】解:函数y=ln(﹣2x)为奇函数,可得f(﹣x)=﹣f(x),ln(+2x)=﹣ln(﹣2x).ln(+2x)=ln()=ln().可得1+ax2﹣4x2=1,解得a=4.故答案为:4. 14.【答案】 {1,﹣1} . 【解析】解:合M={x||x|≤2,x∈R}={x|﹣2≤x≤2},N={x∈R|(x﹣3)lnx2=0}={3,﹣1,1},则M∩N={1,﹣1},故答案为:{1,﹣1},【点评】本题主要考查集合的基本运算,比较基础. 15.【答案】 240 . 【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为Tr+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题. 16.【答案】 0 . 【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1, 其图象开。
