
2021年安徽省安庆市枞阳县第三中学高一数学文测试题含解析.docx
7页2021年安徽省安庆市枞阳县第三中学高一数学文测试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 若不等式对任意的恒成立,则的取值范围是( )A. B. C. D.参考答案:B2. 与函数y=|x|相等的函数是( )A.y=()2 B.y=()3 C.y= D.y=参考答案:C【考点】判断两个函数是否为同一函数.【专题】函数思想;综合法;函数的性质及应用.【分析】对于A,B,D经过化简都可得到y=x,显然对应法则和y=|x|的不同,即与y=|x|不相等,而C化简后会得到y=|x|,从而得出该函数和y=|x|相等.【解答】解:y=,, =x,这几个函数的对应法则和y=|x|的不同,不是同一函数;,定义域和对应法则都相同,是同一函数.故选C.【点评】考查函数的三要素:定义域、值域,和对应法则,三要素中有一要素不同,便不相等,而只要定义域和对应法则相同时,两函数便相等.3. 若不等式对一切恒成立,则实数的最大值为( )A. 0 B. 2 C. D. 3参考答案:C【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.【详解】因为不等式对一切恒成立,所以对一切,,即恒成立.令.易知在内为增函数.所以当时,,所以的最大值是.故选C.【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发);(2)参变分离法(考虑新函数与参数的关系).4. 将军中学将于近期召开学生代表大会,规定各班每人推选一名代表,当各班人数除以的余数大于时再增选一名代表。
那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为(A) (B) (C) (D)参考答案:C5. 已知等比数列{an}中,a2=1,则其前3项的和S3的取值范围是( )A.(-∞,-1] B.(-∞,0)∪(1,+∞)C.[3,+∞) D.(-∞,-1]∪[3,+∞) 参考答案:D设a1=x,且x≠0,则S3=x+1+,由函数y=x+的图象知:x+≥2或x+≤-2,∴y∈(-∞,-1]∪[3,+∞). 6. 在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为( )A.1∶ B.1∶9 C.1∶ D.1∶ 参考答案:D略7. (5分)下列对应f:A→B:①A=R,B={x∈R|x>0},f:x→|x|;②A=N,B=N*,f:x→|x﹣1|;③A={x∈R|x>0},B=R,f:x→x2.是从集合A到B映射的有() A. ①②③ B. ①② C. ②③ D. ①③参考答案:C考点: 映射. 专题: 计算题;函数的性质及应用.分析: 利用映射的定义选择哪个对应是映射,把握准“对于集合A中任何元素在集合B中有唯一确定的元素与之对应”进行判断.解答: ①A=R,B={x∈R|x>0},f:x→|x|,x=0时,B中没有元素对应,∴不是从集合A到B映射;②A=N,B=N*,f:x→|x﹣1|,符合映射的定义,是从集合A到B映射;③A={x∈R|x>0},B=R,f:x→x2,符合映射的定义,是从集合A到B映射.故选:C点评: 本题考查映射的概念,弄准两个集合在法则f对应下是否满足映射的定义要求.属于概念性基础问题.8. 同时转动如图所示的两个转盘,记转盘甲得到的数为,转盘乙得到的数为,构成数对,则所有数对中满足的概率为( )A. B. C. D. 参考答案:C略9. 设f(x)是定义在R上的增函数,且对于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果实数m、n满足不等式组,那么m2+n2的取值范围是( )A.(3,7) B.(9,25) C.(13,49) D.(9,49)参考答案:C【考点】简单线性规划的应用.【专题】综合题.【分析】根据对于任意的x都有f(1﹣x)+f(1+x)=0恒成立,不等式可化为f(m2﹣6m+23)<f(2﹣n2+8n),利用f(x)是定义在R上的增函数,可得∴(m﹣3)2+(n﹣4)2<4,确定(m﹣3)2+(n﹣4)2=4(m>3)内的点到原点距离的取值范围,即可求得m2+n2 的取值范围.【解答】解:∵对于任意的x都有f(1﹣x)+f(1+x)=0恒成立∴f(1﹣x)=﹣f(1+x)∵f(m2﹣6m+23)+f(n2﹣8n)<0,∴f(m2﹣6m+23)<﹣f[(1+(n2﹣8n﹣1)],∴f(m2﹣6m+23)<f[(1﹣(n2﹣8n﹣1)]=f(2﹣n2+8n)∵f(x)是定义在R上的增函数,∴m2﹣6m+23<2﹣n2+8n∴(m﹣3)2+(n﹣4)2<4∵(m﹣3)2+(n﹣4)2=4的圆心坐标为:(3,4),半径为2∴(m﹣3)2+(n﹣4)2=4(m>3)内的点到原点距离的取值范围为(,5+2),即(,7)∵m2+n2 表示(m﹣3)2+(n﹣4)2=4内的点到原点距离的平方∴m2+n2 的取值范围是(13,49).故选C.【点评】本题考查函数的奇偶性与单调性,考查不等式的含义,解题的关键是确定半圆内的点到原点距离的取值范围.10. 若点P在圆上运动,,则PQ的最小值为( )A. B. C. D. 参考答案:B【分析】由圆的方程求得圆心和半径;根据点坐标可得其轨迹为一条直线,则所求的最小值即为圆心到直线的距离减去半径,利用点到直线距离公式求得距离后,代入可得结果.【详解】由圆的方程得:圆心坐标,半径 点轨迹为:,即圆心到直线距离:本题正确选项:【点睛】本题考查圆上的点到直线上的点的距离的最小值的求解问题,关键是能够通过点的坐标得到轨迹方程.二、 填空题:本大题共7小题,每小题4分,共28分11. 已知角的终边经过点,其中,则的值等于 。
参考答案:;12. 化简= 参考答案:213. 若指数函数的图像过点,则_______________;不等式的解集为_______________________.参考答案:, (-1,1) 14. 在△ABC中角A,B,C的对边分别是a,b,c,且=a,a=2,若b∈[1,3],则c的最小值为 .参考答案:3【考点】HR:余弦定理.【分析】由已知及正弦定理可得: =sinC,结合余弦定理,可得3cosC=sinC,从而可求tanC,利用同角三角函数基本关系式可求cosC,从而可求c2=b2﹣2b﹣12=(b﹣)2+9,结合范围b∈[1,3],利用二次函数的图象和性质即可解得c的最小值.【解答】解:∵ =a,∴由正弦定理可得: =sinC,整理可得:a2+b2﹣c2=,又∵由余弦定理可得:a2+b2﹣c2=2abcosC,∴2abcosC=,整理可得:3cosC=sinC,∴解得:tanC=,cosC==,∴c2=b2﹣2b﹣12=(b﹣)2+9,∵b∈[1,3],∴当b=时,c取最小值为3.故答案为:3.15. 若函数的定义域为A,则函数的值域为__________.参考答案:【分析】先计算函数的定义域A,再利用换元法取化简为二次函数得到值域.【详解】由,得,,∴,∴.令,则,∴当时,;当时,.故答案为:【点睛】本题考查了函数的定义域和值域,属于常考题型.16. 函数的定义域为_______________.参考答案:17. 已知正方体的棱长为2,则它的内切球的表面积是 参考答案:三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 如图,平面四边形ABCD关于直线AC对称,,把△ABD沿BD折起(如图2),使二面角A―BD―C的余弦值等于对于图2,完成以下各小题:(1)求A,C两点间的距离;(2)证明:AC平面BCD;(3)求直线AC与平面ABD所成角的正弦值参考答案:(1)取BD的中点E,连接AE,CE,由AB=AD,CB=CD得,就是二面角A―BD―C的平面角,在△ACE中,(2)由AC=AD=BD=2,AC=BC=CD=2,(3)以CB,CD,CA所在直线分别为x轴,y轴和z轴建立空间直角坐标系C-xyz,则19. (本小题满分12分)已知定义在区间上的函数的图像关于直线对称,当时,函数的图像如下图所示 (Ⅰ) 求函数在上的解析式;(Ⅱ) 求方程的解.参考答案:解:(Ⅰ)由图像知当时,将代入得因为 故所以时,由关于直线对称,当20. 已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项.(1)求数列{an}的通项公式;(2)设bn=,是否存在最大的整数t,使得对任意的n均有Sn>总成立?若存在,求出t;若不存在,请说明理由.参考答案:【考点】8E:数列的求和;84:等差数列的通项公式.【分析】(1)依已知可先求首项和公差,进而求出通项an和bn,在求首项和公差时,主要根据先表示出等差数列的三项,根据这三项是等比数列的三项,且三项成等比数列,用等比中项的关系写出算式,解出结果.(2)由题先求出{bn}的通项公式后再将其裂成两项的差,利用裂项相消的方法求出和Sn,利用递增数列的定义判断出数列{Sn}是单调递增的,求出其最小值得到t的范围.【解答】解:(1)由题意得(a1+d)(a1+13d)=(a1+4d)2,…整理得2a1d=d2.∵a1=1,解得(d=0舍),d=2.…∴an=2n﹣1(n∈N*).…(2),∴=.…假设存在整数总成立.又,∴数列{Sn}是单调递增的. …∴.又∵t∈N*,∴适合条件的t的最大值为8.…21. 在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.参考答案:【考点】待定系数法求直线方程.【分析】(Ⅰ)求出直线AB的斜率,点到其中垂线的斜率,求出直线方程看;(Ⅱ)设出△ABC的重心,结合公式求出重心的坐标即可.【解答】解:(Ⅰ)∵AB的中点是M(3,2),直线AB的斜率是﹣3,线段AB中垂线的斜率是,故线段AB的垂直平分线方程是y﹣2=(x﹣3),即x﹣3y+3=0;(Ⅱ)设△ABC的重心为G(x,y),由重心坐标公式可得,故重心坐标是G(4,2).22. 已知函数.(1)求f[f(1)]的值;(2)若f(x)>1,求x的取值范围;(3)判断函数在(-2,+∞)上的单调性,并用定义加以证明.参考答案:(1) (2)(-∞,-2) (3)增函数,证明见解析【分析】(1)可以求出,然后代入x=即。












