好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

平行四边形全章知识点.doc

8页
  • 卖家[上传人]:公****
  • 文档编号:454016817
  • 上传时间:2023-12-04
  • 文档格式:DOC
  • 文档大小:442.50KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 平行四边形全章知识点总结定义:两组对边分别平行的四边形是平行四边形平行四边形的性质:(1):平行四边形对边相等 (即:AB=CD,AD=BC);(2):平行四边形对边平行 (即:AB//CD,AD//BC);(3):平行四边形对角相等 (即:∠A=∠C,∠B=∠D);(4):平行四边形对角线互相平分 (即:OA=OC,OB=OD); 平行四边形的判定方法:1. 两组对边分别平行的四边形是平行四边形(定义判定法); 2. 一组对边平行且相等的四边形是平行四边形;3. 两组对边分别相等的四边形是平行四边形;4. 对角线互相平分的四边形是平行四边形;5. 两组对角分别相等的四边形是平行四边形; 考点1 特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角矩形具有________的一切性质矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点矩形被对角线分成了____________个等腰三角形。

      3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等很多同学容易忽视这个问题2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形2)菱形的性质菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质菱形即是轴对称图形,对称轴有____条3)菱形的面积菱形的面积=底×高,菱形的面积=ab,其中a,b分别为菱形两条对角线的长菱形被对角线分成了4个全等的直角三角形4)菱形的判定:______________都相等的四边形是菱形;对角线____________的平行四边形是菱形;有一组邻边相等的平行四边形是菱形温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。

      3.正方形的性质及判定方法(1)正方形的性质:正方形的四个角都是_____________,四条边都_____________;正方形的两条对角线____________,并且互相垂直平分,每条对角线平分一组对角;正方形即是轴对称图形也是中心对称图形正方形具有平行四边形、矩形、菱形的一切性质2)正方形的判定方法:有一组邻边相等的____是正方形;对角线互相____的矩形是正方形;有一个角是直角的菱形是正方形;对角线________的菱形是正方形温馨提示:无论是正方形的性质还是正方形的判定,它的中心思想就是正方形即是矩形,又是菱形,如果都从这个出发,则一切的性质与判定就都有了但要注意在利用对角线判定正方形时,“平分”这个前提,因为只有对角线平分了,此四边形才是平行四边形了,然后再证明是矩形又是菱形一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“ ”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的 对角线互相平分;(4)面积:①; ②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形 ④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角 的平行四边形 是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等 的平行四边形 是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角 的平行四边形 叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;② 另一组对边不平行 (5)等腰梯形:是一种特殊的梯形,它是两腰相等 的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形: ①边:对边平行且相等; ②角:对角相等、邻角互补;③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等; ②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等; ②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等; ②角:同一底边上的两个角相等;对角互补③对角线:对角线相等; ④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.① 有一组邻边相等 且有一个直角 的平行四边形② 有一组邻边相等 的矩形; ③ 对角线互相垂直 的矩形. ④ 有一个角是直角 的菱形 ⑤ 对角线相等 的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形① 同一底两个底角相等的梯形; ② 对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.② 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③ 说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD的四条相等.(3)识别正方形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③ 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法① 先说明四边形ABCD为梯形,再说明两腰相等.② 先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③ 先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题① 设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.② 设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=.③ 设正方形ABCD的一边长为a,则S正方形=;若正方形的对角线的长为a,则S正方形=.④ 设梯形ABCD的上底为a,下底为b,高为h,则S梯形=.平行四边形矩形菱形正方形图形性质1.对边 且 ;2.对角 ; 邻角 ;3.对角线 ;1.对边 且 ;2.对角 且四个角都是 ;3.对角线 ;1. 对边 且四条边都 ;2.对角 ;3.对角线 且每条对角线 ;1.对边 且四条边都 ;2.对角 且四个角都是 ;3.对角线 且每条对角线 ;面积 例1:如图,菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为( )A. B. C. D.3 例2:如图,把矩形沿对折后使两部分重合,若,则=( )A.110° B.115° C.120° D.130°一、选择题(每题3分,共30分)1.如图,在菱形ABCD中,AB = 5,∠BCD = 120°,BACD 则对角线AC等于( ) A.20 B.15 C. 10 D.52. 如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,ABCD沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A. B. C. D.3.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是( )A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形ABCDFEOABCDDBCANMO第3题图ADE。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.