
西南交通大学924信号与系统一历年考研真题汇编(含部分答案).pdf
48页2015 年西南交通大学924 信号与系统一考研真题2014 年西南交通大学924 信号与系统一考研真题及详解一、选择题1( )5cos(3)3cos(2)23y ttt的周期是() 西南交通大学2014 研A6B3C2D【答案】 C【解析】123T,222T,两者公倍数是22若( )f t是已录制声音的磁带,则下列表述错误的是() 西南交通大学2014 研A()ft表示将磁带倒带转播放生的信号B(2)f t表示将磁带以超前2 个单位播放C()2tf表示原磁带放音速度以二倍速度加快播放D2( )f t将磁带的音量放大一倍播放【答案】 C【解析】 表示原磁带放音速度降低一半播放(利用傅里叶变换)3一 LTI 系统的单位冲激响应1( )(0.5)( 1)h tut,该系统是() 西南交通大学2014 研A因果稳定B因果不稳定C非因果稳定D非因果不稳定【答案】 D【解析】 由( )h t的形式看,令0t有1(0)0.5( 1)hu,响应超前于激励,因此系统是非因果的,收敛于Re 0.5s,不包含单位圆,系统不稳定4若( )f t为系统的输入激励,( )y t为系统的输出响应,(0)y为系统的初始状态,下列哪个输出响应所对应的系统是线性系统() 。
西南交通大学2014 研A2( )5(0)3 ( )y tyf tB( )( )3 (0)2( )df ty tyf tdtC( )2 (0)( )2( )y tyf tf tD2( )4 (0)2( )y tyft【答案】 B【解析】 线性系统中不会出现输入、输出的乘积形式5信号( )df ttdt的傅里叶变换为() 西南交通大学2014 研A()()dFFdB()()dFFdC()()dFFdD()()dFFd【答案】 D【解析】 根据傅里叶变换的时域微分性质( )( )FTdf tjFdt及频域微分性质()( )FTdFtf tjd,所以( )()FTdFdf td jFtjFdtdd6信号( )x t的傅里叶变换为1 ,0 ,22Xj,则( )x t为() 西南交通大学2014 研Asin22ttBsin2ttCsin44ttDsin4tt【答案】 B【解析】2sin,FTtSatGtt则44sin 22 sin 2222FTttGtGttt7信号( )x t的有理拉普拉斯变换共有两个极点3s和5s,若4tg te x t,其傅里叶变换()G j收敛,则( )x t是()信号。
西南交通大学2014 研A左边B右边C双边D不确定【答案】 B【解析】 根据拉斯变换能转换为傅里叶变换的条件,要使( )x t的拉斯变换和傅里叶变换同时存在,收敛域必须包含j轴因此收敛域Res3,所以为右边序列8以下说法错误的是() 西南交通大学2014 研A右边信号的收敛域位于S 平面内一条平行于j轴的直线的右边B右边序列的收敛域是某个圆的外部,但可能不包括| |zC时限信号的收敛域是整个S 平面D有限长序列的收敛域是整个Z 平面【答案】 D【解析】 有限长序列的收敛域是除0 及两个点以外的整个Z 平面:0z9若周期信号( )x n是实信号和奇信号,则其傅里叶级数系数ka是() 西南交通大学2014 研 A实且偶B实且为奇C纯虚且偶D纯虚且奇【答案】 D【解析】 结论:( )x n是实信号和奇信号,则其傅里叶级数系数纯虚且奇,( )x n是实信号和偶信号,则其傅里叶级数系数实且偶10欲使信号通过线性系统不产生失真,则该系统应具有() 西南交通大学2014 研A幅频特性为线性,相频特性也为线性B幅频特性为线性,相频特性为常数C幅频特性为常数,相频特性为线性D系统的冲激响应为0( )()h tku tt【答案】 C【 解 析 】 无 失 真 传 输 的 条 件 是 :0( )()y tKftt, 满 足 无 失 真 传 输 系 统 的 频 谱 函 数 为 :00,jjtHjKHjKeHjet,可见,要使信号通过线性系统时不产生失真,则要求在信号的全部频带内,系统频响的幅频特性为一常数,相频特性是一过原点的直线。
二、某 LTI 系统的输入1( )x t与零状态相应1( )zsyt分别如图1 中( a)与( b)所示:( 1)求系统的冲激响应( )h t、并画出( )h t的波形 2)当输入为如图1 中图( c)所示的信号2( )xt时,画出系统的零状态响应2( )zsyt的波形 西南交通大学 2014 研 图 1 解: (1)11121221211zsyt u tu ttu tu ttu ttttxtu tu tu ttt在零状态下有卷积性质得11( )( )zsytx th t利用公式:u tu ttu t得:11h tu tttu tu t图形如图2 所示:图 2 ( 2)根据 LTI 系统特性21121111zszszsxtxtxtytytyt图 3 三、有一离散线性时不变系统,差分方程为0.612.821y ny ny nx n( 1)求该系统的系统函数H z,并画出零、极点图;( 2)限定系统是因果的,写出H z的收敛域,并求单位冲激响应h n;( 3)限定系统是稳定的,写出H z的收敛域,并求单位冲激响应h n;( 4)分别画出系统的直接形式、并联形式的模拟框图西南交通大学2014 研解: (1)差分方程两边同时进行z 变换,有1210.62.8Y zz Y zz Y zz X z也即12110.62.8Y zzzXzz112210.62.80.62.821.4Y zzH zX zzzzzzzzz极点:122 ,1.4pp,零点10z。
图 4 ( 2)因果系统,收敛域在圆外:|2|z 55171721.45521.41717nnzzHzzzh nu nu n( 3)系统稳定,收敛域包含单位圆,Re:1.24zz 5521.41717nnh nunu n( 4)直接式:11210.62.8zHzzz直接形式的模拟框图如图5 所示:图 5 并联式:55171721.4zzH zzz并联形式的模拟框图如图6 所示:图 6 四、设ft为频带有限信号,频带宽度为8/mrads,其频率F如图 7 所示 1)求f t的奈奎斯特抽样频率s和sf、奈奎斯特抽样间隔sT;( 2) 设用抽样序列TsntnT对信号f t进行抽样, 得抽样信号sft, 画出sft的频谱sF的示意图 3)若用同一个Tt对2ft进行抽样,试画出抽样信号2sft的频谱图 西南交通大学2014 研 图 7 解: (1)216/smrads奈奎斯特抽样频率s为 16/rads82ssf又2ssT22128ssmmT( 2)22112482TsssTssnTTFFFnFnTT图 8 ( 3)设11211221622222ssssftFnFFFnFTT图 9 五、正交幅度调制(QAM )可以在一个公共信道中同时传送两个信号,有效地提高信道的宽度。
QAM 系统的基本原理如图10 所示,假设输入信号1ft和2ft的带宽为0且满足0c,c为载波频率低通滤波器 LPF 的截止频率为03,幅度为1求:( 1)假设1ft和2ft的频谱分别为1Fj和2Fj,写出1gt和2gt的频域表达式;( 2)计算输出信号1e t和2et西南交通大学2014 研 图 10 解: (1)由系统的框图可知112112cos()sin() cos()cos()sin() sin ()ccccccgtfttftttgtfttfttt又已知cos()sin()ccccccttj所以,根据傅里叶变换的频域卷积定理,可得1211221cos()sin()2ccccccfttfttFFjFjF进而有1111222112221222224222224ccccccccgtFFFjFjFjgtFFjFjFjF(2)通过低通滤波器后,频率大于03的频率分量都被虑去,111111,22EFe tft222211,22EFetft六 、 已 知 某 因 果 系 统 的 系 统 函 数 为23812sHsss, 输 入 信 号3tx teu t, 初 始 条 件 为01 ,03yy求系统的零输入响应、零状态响应、自由响应和强迫响应。
西南交通大学2014 研 解:36213sH sssx ss设零输入响应为( )ziyt,根据系统函数H s的极点:126 ,2ss,设6212ttziyc ec e,带入初始条件01 ,03yy11212251462394cccccc6259( )44ttziyteeu t设零状态响应为( )zsyt,则111426zsYsX s H sss261( )4ttzsyteeu t因此,系统的全响应为2653( )( )( )22ttzizsy tytyteeu t其中,自由响应分量为265322tteeu t强迫响应分量为:0 七、已知傅里叶变换的时域积分性质为10tFxdXjXj,试利用时频对偶性质证明频域积分性质:0Fx txtXjdjt西南交通大学2014 研证明: 因为10tFxdXjXj所以有1102tjtxdXjXedj显然1102tjtxdXjXedj将变量t与互换,又因为2T,可以得到10jtXjdx txtedtjt也即10j tXjdx txt edtjt即证0Fx txtXjdjt2013 年西南交通大学924 信号与系统一考研真题及详解一、选择题1某系统的系统函数为H s,若同时存在频响函数Hj,则该系统必须满足条件() 。
西南交通大学 2013 研 A时不变系统B因果系统C稳定系统D线性系统【答案】 C【解析】 一个信号的傅里叶变换是拉普拉斯变换沿j轴求值,因此系统函数的收敛域包含j轴,即系统稳定2理想不失真传输系统的传输函数Hj(00,ctk为常数)是() 西南交通大学2013 研A0jtKeB0jtKeC00j tcKeuD0 0jtKe【答案】 B【解析】 理想不失真的频域条件是:HjK(K 为常数),0t,一条过原点的直线3若对f t进行理想取样,其奈奎斯特取样频率为sf,则对进行取样123ft,其奈奎斯特取样频率为() 西南交通大学2013 研A3sfB13sfC32sfD123sf【答案】 B【解析】1:f t,则1222212 :,332233sssfftff4连续周期信号f t的频谱F j的特点是() 西南交通大学2013 研A周期、连续频谱B周期、离散频谱C连续、非周期频谱D离散、非周期频谱【答案】 D【解析】 基本结论:周期信号对应的频谱是离散的,连续信号对应的频谱是非周期的,逆命题也成立5以下说法错误的是() 西南交通大学2013 研A右边信号的收敛域位于S 平面内一条平行于j轴的直线的右边B右边序号的收敛域是某个圆的外部,但可能不包括|zC时限信号的收敛域是整个S 平面D有限长序列的收敛域是整个Z 平面【答案】 A【解析】 右边信号的收敛域是一条平行于j轴直线的右侧,但不限制于j轴右侧。
6已知f tFj,则信号5y tf tt的频谱函数Yj为() 西南交通大学2013研A55jfeB5jF jeC5fDF j【答案】 A【解析】5555jy tftYjfe7周期矩形脉冲的谱线间隔与() 西南交通大学2013 研A脉冲幅度有关B脉冲宽度有关C脉冲周期有关D周期和脉冲宽度有关【答案】 C【解析】 由2T可知8已知 Z 变换1113Z x nz,收敛域3z,求逆变换为() 西南交通大学2013 研A3nu nB3nunC3nunD31nun【答案】 D【 解 析 】 Z变 换 与 收 敛 域 关 系 : ROC为|3z, 说 明 序 列x n为 左 边 序 列 , 因 此 ,313znzZ x nx nunz9系统函数H s与激励信号X s之间() 西南交通大学2013 研 A是反比例关系B无关系C线性关系D不确定【答案】 B【解析】 系统函数只与系统本身的状态有关,与输入无关10321 ()2ttdt() 西南交。
