
人教七年级数学上册同步练习题及答案.doc
73页第一章 有理数1.1 正数和负数(第一课时)(基础训练) 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.在银行存入款存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________. 3.已知下列各数:,,3.14,+305,0,-23.则正数有___________ _;负数有______ ______. 4.向东行进-50m表示的意义是( )A.向东行进50m C.向北行进50m B.向南行进50m D.向西行进50m 5.下列结论中正确的是( ) A.0既是正数,又是负数 B.O是最小的正数C.0是最大的负数 D.0既不是正数,也不是负数 6.给出下列各数:-3,0,+5,,+3.1,,2004,+2008.其中是负数的有 ( ) A.2个 B.3个 C.4个 D.5个 7.下列各数中,哪些是正数?哪些是负数? +8,-25,68,O,,-3.14,0.001,-889.(综合训练)1.写出比O小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.1.1 正数和负数(第二课时)(课前小测)1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.零下15℃,表示为_____,比O℃低4℃的温度是_____.3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.4.“甲比乙大-3岁”表示的意义是________________.5.在-7,0,-3,,+9100,-0.27中,负数有( ) A.0个 B.1个 C.2个 D.3个(基础训练)1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作__________. 2.如果把+210元表示收入210元,那么-60元表示______________. 3.粮食产量增产11%,记作+11%,则减产6%应记作______________. 4.如果把公元2008年记作+2008年,那么-205年表示______________. 5.如果向西走12米记作+12米,则向东走-120米表示的意义是__________________.6.甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为 ;这时甲、乙两人相距 米。
7.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.8.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.(1)求这五次测量的平均值是; (2)如以求出的平均值为基准数,用正、负数表示出各次测量的数值与平均值的差分别是多少?1.2.1 有理数(第三课时)(课前小测)1.海拔高度是+1356m,表示____________,海拔高度是-254m,表示____________.2,2009,,0,-3,+1,,-6.8中,正整数有( ) A.2个 B.3个 C.4个 D.5个3.一潜水艇所在高度是-60米,如果它下潜10米,所在高度为 米.4.味精袋上标有“500±5克”字样中,表示最重不超过 克,最小不超过 克.5.甲冷库的温度是-12°C,乙冷库的温度比甲冷库低5°C,则乙冷库的温度是 . (基础训练)1.___________________统称为整数,_____________统称为分数,整数和分数统称为____________, 零和负数统称为____ _,零和正数统称为__ _____.2.下列说法中正确的是 ( )A.非负有理数就是正有理数 B.零表示没有,不是自然数 C.正整数和负整数统称为整数 D.整数和分数统称为有理数4.下列说法中不正确的是 ( )A.-3.14既是负数,分数,也是有理数; B.0既不是正数,也不是负数,但是整数C.-2000既是负数,也是整数,但不是有理数; D.O是非正数5.把下列各数分别填在相应集合中:1,-0.20,,32,-78,0,-2.13,0.68,-2009.整数集合:{ …}; 分数集合:{ …};正整数集合:{ …}; 负整数集合:{ …};正分数集合:{ …}; 负分数集合:{ …};正数集合:{ …}; 负数集合:{ …}.1.2.2 数轴(第四课时)(课前小测)1.给出下列说法:①0是整数;②是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个2.把下列各数填在相应的大括号里:5,,-3,,0,201,-35,6.2,-l.正数集合:{ …};负数集合:{ …};自然数集合:{ …};整数集合:{ …};分数集合:{ …};负分数集合:{ …}.(基础训练)1. 如图所示,点M表示的数是( ) A. 2.5 B. C. D. 1.52. 下列说法正确的是( )A. 有原点、正方向的直线是数轴; B. 数轴上两个不同的点可以表示同一个有理数C. 有些有理数不能在数轴上表示出来;D. 任何一个有理数都可以用数轴上的点表示3. 数轴上原点及原点右边的点表示的数是( ) A. 正数 B. 负数 C. 非负数 D. 非正数4. 数轴上点M到原点的距离是5,则点M表示的数是( )A. 5 B. C. 5或 D. 不能确定5. 数轴上与原点的距离是3的点有___________个,这些点表示的数是___________;与原点的距离是6的点有___________个,这些点表示的数是___________。
6. 从数轴上原点开始,向右移动6个单位长度,再向左移动5个单位长度,终点所表示的数是________7. 在数轴上表示下列各数,并用“<”连接起来 1.2.3 相反数(第五课时)(课前小测)1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有 个.2. 写出数轴上点A,B,C,D,E所表示的数: 3. 在数轴上表示下列各数,并用“<”连接起来3,—3,1.5,—1.5, 0 4. 数轴上与原点的距离是2的点有___________个,这些点表示的数是___________;与原点的距离是5的点有___________个,这些点表示的数是___________5. 数轴上与原点的距离是a (a>0)的点有_______个,这些点表示的数是___________.(基础训练)1.只有__________的两个数,叫做互为相反数.0的相反数是_______.2.+5的相反数是______;______的相反数是-2; 与______互为相反数.3.若的相反数是-3,则;若,则.4.化简下列各数的符号:,,.(综合训练)6.如果与互为相反数,那么 ( )A. B. C.x·2y=0 D.,8.写出下列各数的相反数,并在数轴上把这些相反数表示出来:+2,-3,0,-(-1),,-(+2).1.2.4 绝对值 (第六课时)(课前小测)1.—2的相反数是_ ____;_______的相反数是。
2.若,则;若,则;如果,那么.3.数轴上离开原点10个单位长度的点所表示的数是___ _ __,它们是互为___ ___.4.下列说法正确的是 ( )A.-5是相反数 B.与互为相反数 C.-4是4的相反数 D.是2的相反数5. 如果一个数的相反数是负数,那么这个数一定是( ) A. 正数 B. 负数 C. 零 D. 正数、负数或零 (基础训练)1.;;;.2.______的相反数是它本身,_ ___的绝对值是它本身,______的绝对值是它的相反数.3.绝对值等于4的数是______.4.当时,;当时,.5 .| x | = 2 , 则x = ;| -x | = 2 , 则x = . 6.绝对值等于其相反数的数一定是 ( ) A.负数 B.正数 C.负数或零 D.正数或零7.如果,则,.8.绝对值不大于5.1的整数有( )A.5个 B.6个 C.10个 D.11个有理数大小比较 (第七课时)(课前小测)1.;.2.的绝对值是______;绝对值等于的数是______,它们互为____ ____.3.在数轴上,绝对值为4,且在原点左边的点表示的有理数为________.4.如果,则,.5.,则;,则.(基础训练)1.数轴上表示的两个有理数,右边的数总比左边的数_ _。
2. 正数都______零,零_______负数,任意一个正数都________任意一个负数3. 两个负数,________________大的反而小大4. 在横线上填上适当的“>”,“<”或“=” (1)(2)(3)5. 在原点的________侧,到原点的距离为__ _____,在原点的_____ __侧,到原点的距离为_________,因此综合训练)6. 下列各式中正确的是( ) A. B. C. D. 7. 如图所示,a、b、c表示的是有理数,按从大到小的顺序用“>”号连接应当是_________1.3.1有理数加法(1) (第八课时)(课前小测)1.比较大小:(1) —2.8 0; (2) (3)2. 大于的整数有 个. 大于的负整数有 3. 绝对值不大于3的整数和是 .4. 把下列各数在数轴上表示出来,并用“<”把各数连接起来基础训练)1.(1).(-6)+(-3)= . (2).(-6)+3= .(3).(+6)+(-3)= . (4).(-6)+0= .2.绝对值小于5的所有正整数的和为 .3.比-8的相反数多2的数是 .4.在数轴上表示-4和3的两点的距离是 5 计算:(1)(―12)+(―18) (2) 6.25 +(―7) (3)(―1)+(+)(综合训练)6. 下列计算结果中等于3的是( ) A. B. C. D. 7.如果两个异号的有理数的和是负数,那么这两个数中至少有一。
