
北京理工大学应用光学课件大全.ppt
447页第一章第一章 几何光学基本原理几何光学基本原理应用光学讲稿对成像的要求对成像的要求本章要解决的问题:本章要解决的问题:像与成像的概念像与成像的概念 光是怎么走的?--光的传播规律光是怎么走的?--光的传播规律 光是什么?--光的本性问题光是什么?--光的本性问题应用光学讲稿第一节第一节 光波与光线光波与光线 研究光的意义研究光的意义: 90%信息由视觉获得信息由视觉获得,光波是视觉的载体光波是视觉的载体 光是什么?光是什么?弹性粒子-弹性波-电磁波-波粒二象性弹性粒子-弹性波-电磁波-波粒二象性 1666年:牛顿提出微粒说,年:牛顿提出微粒说,弹性粒子弹性粒子 1678年:惠更斯提出波动说,以太中传播的年:惠更斯提出波动说,以太中传播的弹性波弹性波 1873年:麦克斯韦提出电磁波解释,年:麦克斯韦提出电磁波解释,电磁波电磁波 1905年:爱因斯坦提出年:爱因斯坦提出光子光子假设假设 20世纪:人们认为光具有世纪:人们认为光具有波粒二象性波粒二象性应用光学讲稿第一节第一节 光波与光线光波与光线 一般情况下一般情况下, 可以把光波作为电磁波看待,光波可以把光波作为电磁波看待,光波波长:波长:λ应用光学讲稿•光的本质是电磁波光的本质是电磁波•光的传播实际上是波动的传播光的传播实际上是波动的传播物理光学:物理光学: 研究光的本性,并由此来研究各种光学现象研究光的本性,并由此来研究各种光学现象几何光学:几何光学: 研究光的传播规律和传播现象研究光的传播规律和传播现象应用光学讲稿可见光:波长在可见光:波长在400-760nm范围范围红外波段:波长比可见光长红外波段:波长比可见光长紫外波段:波长比可见光短紫外波段:波长比可见光短应用光学讲稿 可见光:可见光:400-760nm 单色光:同一种波长单色光:同一种波长 复色光:由不同波长的光波混合而成复色光:由不同波长的光波混合而成频率和光速,波长的关系频率和光速,波长的关系在透明介质中,波长和光速同时改变,频率不变在透明介质中,波长和光速同时改变,频率不变应用光学讲稿几何光学的研究对象和光线概念几何光学的研究对象和光线概念•研究对象研究对象 不考虑光的本性不考虑光的本性 研究光的传播规律和传播现象研究光的传播规律和传播现象l 特特 点点 不考虑光的本性,把光认为是不考虑光的本性,把光认为是光线光线应用光学讲稿 光线的概念光线的概念能够传输能量的几何线,具有方向能够传输能量的几何线,具有方向光线概念的缺陷光线概念的缺陷 2.绝大多数光学仪器都是采用光线的概念设计绝大多数光学仪器都是采用光线的概念设计的的采用光线概念的意义:采用光线概念的意义: 1.用光线的概念可以解释绝大多数光学现象用光线的概念可以解释绝大多数光学现象::影子、日食、月食影子、日食、月食 应用光学讲稿光线是能够传输能量的几何线,具有方向光线是能够传输能量的几何线,具有方向光波的传播问题就变成了几何的问题光波的传播问题就变成了几何的问题所以称之为几何光学所以称之为几何光学 当几何光学不能解释某些光学现象,例如干涉、当几何光学不能解释某些光学现象,例如干涉、衍射时,再采用物理光学的原理衍射时,再采用物理光学的原理应用光学讲稿光线与波面之间的关系光线与波面之间的关系•波面:波动在某一瞬间到达的各点组成的面波面:波动在某一瞬间到达的各点组成的面At 时刻t + Δt 时刻应用光学讲稿 光线是波面的法线光线是波面的法线 波面是所有光线的垂直曲面波面是所有光线的垂直曲面同心光束:由一点发出或交于一点的光束;同心光束:由一点发出或交于一点的光束; 对应的波面为球面对应的波面为球面应用光学讲稿像散光束:不严格交于一点,波面为非球面像散光束:不严格交于一点,波面为非球面应用光学讲稿平行光束平行光束波面为平面波面为平面应用光学讲稿一、光的传播现象的分类光的传播现象的分类第二节第二节 几何光线基本定律几何光线基本定律灯泡灯泡空气空气玻璃玻璃应用光学讲稿光的传播可以分类为:光的传播可以分类为:1、光在同一种介质中的传播;、光在同一种介质中的传播;2、光在两种介质分界面上的传播。
光在两种介质分界面上的传播应用光学讲稿二、几何光学基本定律二、几何光学基本定律1、光线在同一种均匀透明介质中时:光线在同一种均匀透明介质中时:直线传播直线传播成分均匀透光2、光线在两种均匀介质分界面上传播时光线在两种均匀介质分界面上传播时: 反射定律,折射定律反射定律,折射定律 应用光学讲稿AO: 入射光线入射光线OB: 反射光线反射光线OC: 折射光线折射光线NN: 过投射点所做的分界面法线过投射点所做的分界面法线I1: 入射光线和分界面法线的夹角入射光线和分界面法线的夹角 ,入射角,入射角R1: 反射光线和分界面法线的夹反射光线和分界面法线的夹角,角, 反射角反射角I2: 折射光线和分界面法线的夹角折射光线和分界面法线的夹角 ,折射角,折射角应用光学讲稿入射面:入射光线和法线所构成的平面入射面:入射光线和法线所构成的平面反射定律:反射光线位在入射面内;反射定律:反射光线位在入射面内; 反射角等于入射角反射角等于入射角 I1=R1折射定律:折射光线位在入射面内;折射定律:折射光线位在入射面内; 入射角正弦和折射角正弦之比,对两种一入射角正弦和折射角正弦之比,对两种一 定介质来说是一个和入射角无关的常数定介质来说是一个和入射角无关的常数 。
Sin I1 Sin I2 n1,2称为第二种介质相对于第一种介质的折射率称为第二种介质相对于第一种介质的折射率= n1, 2应用光学讲稿对于不均匀介质对于不均匀介质可看作由无限多的均匀介质组合而成,光线的可看作由无限多的均匀介质组合而成,光线的传播,可看作是一个连续的折射传播,可看作是一个连续的折射直线传播定律直线传播定律反射定律反射定律折射定律折射定律几何光学的基本定律几何光学的基本定律应用光学讲稿第三节第三节 折射率和光速折射率和光速一、折射定律和折射率的物理意义一、折射定律和折射率的物理意义折射定律:折射定律:折射光线在入射面内折射光线在入射面内Sin I1Sin I2==n 1, 2n1,2 : 第二种介质相对于第一种介质的折射率第二种介质相对于第一种介质的折射率 应用光学讲稿QO´Q´应用光学讲稿SinI1 υ1SinI2 υ2 = n 1, 2第二种介质对第一种介质折射率等于第一种介质中的第二种介质对第一种介质折射率等于第一种介质中的光速与第二种介质中的光速之比。
光速与第二种介质中的光速之比 折射率的物理意义折射率的物理意义 折射率与光速之间的关系折射率与光速之间的关系应用光学讲稿二、相对折射率与绝对折射率二、相对折射率与绝对折射率1、相对折射率:、相对折射率: 一种介质对另一种介质的折射率一种介质对另一种介质的折射率2、绝对折射率、绝对折射率介质对真空或空气的折射率介质对真空或空气的折射率应用光学讲稿3、相对折射率与绝对折射率之间的关系相对折射率与绝对折射率之间的关系相对折射率:相对折射率: υ1 υ2n 1, 2=第一种介质的绝对折射率第一种介质的绝对折射率:第二种介质的绝对折射率第二种介质的绝对折射率: Cυ1n 1= Cυ2n 2=所以所以 n 1, 2= n 2 n 1应用光学讲稿三、用绝对折射率表示的折射定律三、用绝对折射率表示的折射定律Sin I1Sin I2==n 1, 2由由n 1, 2 = n 2 n 1 有有 Sin I1Sin I2 n 2 n 1=或或 n1 Sin I1 = n2 Sin I2应用光学讲稿课堂练习:判断光线如何折射课堂练习:判断光线如何折射空气空气 n=1水水 n=1.33I1I2玻璃玻璃 n=1.5空气空气 n=1I1应用光学讲稿空气空气 n小小玻璃玻璃 n大大cI1空气空气 n小小玻璃玻璃 n大大应用光学讲稿第四节第四节 光路可逆和全反射光路可逆和全反射一、光路可逆一、光路可逆AB1、现象、现象应用光学讲稿2、证明、证明直线传播直线传播:AB反射:反射:I1=R1 R1=I1折射:折射:n1 Sin I1 = n2 Sin I2n2 Sin I2 = n1 Sin I1I1R1ABI2C应用光学讲稿3、应用、应用光路可逆:光路可逆: 求焦点求焦点 光学设计中,逆向计算:目镜,显微物光学设计中,逆向计算:目镜,显微物镜等镜等应用光学讲稿二、全反射二、全反射1、现象、现象水水空气空气AI1R1I2O1O2O3O4I0应用光学讲稿2、发生全反射的条件、发生全反射的条件 必要条件:必要条件: n1>n2 由光密介质进入光由光密介质进入光 疏介质疏介质 充分条件:充分条件: I1>I0 入射角大于全反射角入射角大于全反射角 1870年,英国科学家丁达尔全反射实验年,英国科学家丁达尔全反射实验应用光学讲稿当光线从玻璃射向与空气接触的表面时,玻当光线从玻璃射向与空气接触的表面时,玻璃的折射率不同、对应的临界角不同璃的折射率不同、对应的临界角不同n1.51.521.541.561.581.601.621.641.66I041°48’ 41°8’40°30’ 39°52’ 39°16’ 38°41’ 37°7’37°7’37°3’应用光学讲稿3、全反射的应用、全反射的应用u 用棱镜代替反射镜:减少光能损失用棱镜代替反射镜:减少光能损失应用光学讲稿u 测量折射率测量折射率待测样品 nB低低 nA高高I0暗亮应用光学讲稿第六节第六节 光学系光学系统类别统类别和成像的概念和成像的概念各种各各种各样样的光学的光学仪仪器器 显显微微镜镜: :观观察察细细小的物体小的物体 望望远镜远镜: :观观察察远远距离的物体距离的物体各种光学零件各种光学零件——反射反射镜镜、透、透镜镜和棱和棱镜镜应用光学讲稿光学系光学系统统:把各种光学零件按一定方式组合起:把各种光学零件按一定方式组合起来,满足一定的要求来,满足一定的要求应用光学讲稿 光学系统分类光学系统分类 按介质分界面形状分:按介质分界面形状分: 球面系统:球面系统:系系统统中的光学零件均由球面构成中的光学零件均由球面构成 非球面系统:非球面系统:系系统统中包含有非球面中包含有非球面 共共轴轴球球面面系系统统::系系统统光光学学零零件件由由球球面面构构成成,,并并且且具具有有一一条条对对称轴线称轴线 今后我们主要研究的是共轴球面系统和平面镜、棱镜系统今后我们主要研究的是共轴球面系统和平面镜、棱镜系统 按有无对称轴分:按有无对称轴分: 共共轴轴系系统统:系统具有一条对称轴线,光轴:系统具有一条对称轴线,光轴 非共非共轴轴系系统统:没有对称轴线:没有对称轴线 应用光学讲稿二、成像基本概念二、成像基本概念1、透镜类型、透镜类型正透镜:正透镜:凸透镜,中心厚,边缘薄,使光线会聚凸透镜,中心厚,边缘薄,使光线会聚,也叫会聚透镜也叫会聚透镜会聚:出射光线相对于入射光线向光轴方向折转会聚:出射光线相对于入射光线向光轴方向折转 负透镜:负透镜:凹透镜,中心薄,边缘厚,使光线发散,也叫发散透镜凹透镜,中心薄,边缘厚,使光线发散,也叫发散透镜发散:出射光线相对于入射光线向远离光轴方向折转发散:出射光线相对于入射光线向远离光轴方向折转应用光学讲稿2、透镜作用---成像、透镜作用---成像AA’A’点称为物体点称为物体A通过透镜所成的像点通过透镜所成的像点。
而把而把A称为物点称为物点A′为为实实际际光光线线的的相相交交点点,,如如果果在在A′处处放放一一屏屏幕幕,,则则可可以以在屏幕上看到一个亮点,这样的像点称为实像点在屏幕上看到一个亮点,这样的像点称为实像点 A和和A′称称为为共共轭轭点点 A’与与A互互为为物物像像关关系系,,在在几几何何光光学学中称为中称为“共轭共轭”应用光学讲稿 3、透镜成像原理透镜成像原理正正透透镜镜::正正透透镜镜中中心心比比边边缘缘厚厚,,光光束束中中心心部部分分走走的的慢慢,,边边缘走的快缘走的快AOPQPQO’A’P’Q’成实像成实像应用光学讲稿负透镜负透镜: 负透镜边缘比中心厚,所以和正透镜相反,负透镜边缘比中心厚,所以和正透镜相反,光束中心部分走得快,边缘走得慢光束中心部分走得快,边缘走得慢AA’成虚像成虚像应用光学讲稿思考:思考:正透镜是否一定成实像?正透镜是否一定成实像?负透镜是否一定成虚像?负透镜是否一定成虚像?应用光学讲稿•名词概念名词概念•像:出射光线的交点像:出射光线的交点• 实像点:出射光线的实际交点实像点:出射光线的实际交点• 虚像点:出射光线延长线的交点虚像点:出射光线延长线的交点•物:入射光线的交点物:入射光线的交点• 实物点:实际入射光线的交点实物点:实际入射光线的交点• 虚物点:入射光线延长线的交点虚物点:入射光线延长线的交点应用光学讲稿像空间:像所在的空间像空间:像所在的空间 实像空间:系统最后一面以后的空间实像空间:系统最后一面以后的空间 虚像空间:系统最后一面以前的空间虚像空间:系统最后一面以前的空间 整个像空间包括实像和虚像空间整个像空间包括实像和虚像空间物空间:物所的空间物空间:物所的空间 实物空间:系统第一面以前的空间实物空间:系统第一面以前的空间 虚物空间:系统第一面以后的空间虚物空间:系统第一面以后的空间 整个物空间包括实物和虚物空间整个物空间包括实物和虚物空间注意:注意: 虚物的产生虚物的产生 虚像的检测虚像的检测应用光学讲稿 物像空间折射率确定物像空间折射率确定物空间折射率:物空间折射率: 按实际入射光线所在的空间折射率计算按实际入射光线所在的空间折射率计算像空间折射率像空间折射率 按实际出射光线按实际出射光线所在的空间折射率计算所在的空间折射率计算应用光学讲稿第七节第七节 理想像和理想光学系理想像和理想光学系统统 为什么要定义理想像为什么要定义理想像 如果要成像清晰,必须一个物点成像为一个像点如果要成像清晰,必须一个物点成像为一个像点 应用光学讲稿如果一个物点对应唯一的像点如果一个物点对应唯一的像点 则直线成像为直线则直线成像为直线直线直线OOOO为入射光线,其对应的出射光线为为入射光线,其对应的出射光线为,需要证明,需要证明是是OOOO的像。
的像 在在OOOO上任取一点上任取一点A A,,OOOO可看作是可看作是A A点发出的很多光线中的一条,点发出的很多光线中的一条,A A的唯的唯一像点为一像点为A A’,,A A’是所有出射光线的会聚点,是所有出射光线的会聚点,A A’当然在其中的一条当然在其中的一条上因为A A点是在点是在OOOO上任取的,即上任取的,即OOOO上所有点都成像在上所有点都成像在上,所以上,所以是是OOOO的像的像 应用光学讲稿如果一个物点对应唯一的像点如果一个物点对应唯一的像点 则平面成像为平面则平面成像为平面应用光学讲稿 符合点对应点,直线对应直线,平面对应平面的像称为理符合点对应点,直线对应直线,平面对应平面的像称为理想像想像 能够成理想像的光学系统称为理想光学系统能够成理想像的光学系统称为理想光学系统 应用光学讲稿 共轴理想光学系统的成像性质共轴理想光学系统的成像性质1.1.轴上点成像在轴上轴上点成像在轴上 .A1.A1’ A. A. .A2 .A2’2.2.位在过光轴的某一截面内的物点对应的像点位在同一平面内位在过光轴的某一截面内的物点对应的像点位在同一平面内3.3.过光轴任一截面内的成像性质是相同的过光轴任一截面内的成像性质是相同的 空空间间的的问问题题简简化化为为平平面面问问题题,,系系统统可可用用过过光光轴轴的的一一个个截截面面来来代表代表应用光学讲稿 共轴理想光学系统的成像性质共轴理想光学系统的成像性质4.4.当物平面垂直于光轴时,像平面也垂直于光轴当物平面垂直于光轴时,像平面也垂直于光轴应用光学讲稿5. 当物平面垂直于光轴时,像与物完全相似当物平面垂直于光轴时,像与物完全相似像和物的比值叫放大率像和物的比值叫放大率 所谓相似,就是物平面上无论什么部位成像,都是按同一放大所谓相似,就是物平面上无论什么部位成像,都是按同一放大率成像。
即放大率是一个常数率成像即放大率是一个常数应用光学讲稿应用光学讲稿 6.6.对于共轴光学系统,如果已知:对于共轴光学系统,如果已知:或者或者 (2)(2)一一对对共共轭轭面面的的位位置置和和放放大大率率,,以以及及轴轴上上两两对对共共轭轭点点的的位位置置则其它任意物点的像均可求出则其它任意物点的像均可求出基点,基面基点,基面 (1) (1)两对共轭面的位置和放大率两对共轭面的位置和放大率应用光学讲稿已知已知: :两对共轭面的位置和放大率两对共轭面的位置和放大率已知已知: :一对共轭面的位置和放大率,和轴上两对共轭点的位置一对共轭面的位置和放大率,和轴上两对共轭点的位置应用光学讲稿光程光程 光线在介质中所走过的几何路程和折射率的乘积称为光程光线在介质中所走过的几何路程和折射率的乘积称为光程 光程等于在相同的时间内,光在真空中传播的几何路程光程等于在相同的时间内,光在真空中传播的几何路程 两个波面之间的所有光线的光程都相等两个波面之间的所有光线的光程都相等理想成像的条件:等光程理想成像的条件:等光程 物点和像点间的所有光线的光程都相等。
物点和像点间的所有光线的光程都相等应用光学讲稿双双曲曲面面::到到两两个个定定点点距距离离之之差差为为为为常常数数的的点点的的轨轨迹迹,, 是是该该两两点点为为焦焦点点的的双双曲曲面面对对内内焦焦点点和和外外焦焦点点符符合合等等光光程程条条件件其中一个是实的,一个是虚的其中一个是实的,一个是虚的抛抛物物面面::到到一一条条直直线线和和一一个个定定点点的的距距离离相相等等的的点点的的轨轨迹迹,,是是以以该该点点为为焦焦点点,,该该直直线线为为准准线线的的抛抛物物面面 对对焦焦点点和和无无限限远远轴上点符合等光程轴上点符合等光程椭椭球球面面::对对两两个个定定点点距距离离之之和和为为常常数数的的点点的的轨轨迹迹,,是是以以该该两两点为焦点的椭圆对两个焦点符合等光程条件点为焦点的椭圆对两个焦点符合等光程条件等光程的反射面等光程的反射面: 二次曲面二次曲面对于反射面,通常都是利用等光程的条件:对于反射面,通常都是利用等光程的条件:等光程的折射面等光程的折射面 二次曲面二次曲面应用光学讲稿•两镜系统基本结构形式两镜系统基本结构形式应用光学讲稿应用光学讲稿•常用两镜系统常用两镜系统•1、、 经典卡塞格林系统经典卡塞格林系统• 主主镜镜为为凹凹的的抛抛物物面面,,副副镜镜为为凸凸的的双双曲曲面面,,抛抛物物面面的的焦焦点点和和双双曲曲面面的的的的虚虚焦焦点点重重合合,,经经双双曲曲面面后后成成像像在在其其实实焦焦点点处处。
卡卡塞塞格格林林系系统统的的长长度度较较短短,,主主镜镜和副镜的场曲符号相反,有利于扩大视场和副镜的场曲符号相反,有利于扩大视场•2、、 格里高里系统格里高里系统•主主镜镜为为凹凹的的抛抛物物面面,,副副镜镜为为凹凹的的椭椭球球面面,,抛抛物物面面的的焦焦点点和和椭椭球球面面的的一一个个焦焦点点重重合合,,经经椭椭球球面面后后成成像像在在其另一个实焦点处其另一个实焦点处• 3 、、R-C系统系统 •主镜副镜均为双曲面主镜副镜均为双曲面 应用光学讲稿•4、、 马克苏托夫系统马克苏托夫系统• 主镜副镜均为椭球面主镜副镜均为椭球面 •5、、 库特系统库特系统• 主镜副镜均为凹面主镜副镜均为凹面 •6、、 同心系统同心系统•7、、无焦系统无焦系统 第二章第二章 共轴球面系统的物像关系共轴球面系统的物像关系 本章内容:共轴球面系统求像由物的位置和大本章内容:共轴球面系统求像由物的位置和大小求像的位置和大小小求像的位置和大小 应用光学讲稿§ 2-1 共轴球面系统中的光路计算公式共轴球面系统中的光路计算公式 求一物点的像,即求所有出射光线位置,交点就是求一物点的像,即求所有出射光线位置,交点就是该物点的像点。
该物点的像点因为所有的球面的特性是一样的,只须导出光线经过因为所有的球面的特性是一样的,只须导出光线经过一个球面折射时由入射光线位置计算出射光线位置的一个球面折射时由入射光线位置计算出射光线位置的公式公式, 即球面折射的光路计算公式即球面折射的光路计算公式 因为所有出射光线位置的求法是相同的,只须找出因为所有出射光线位置的求法是相同的,只须找出求一条出射光线的方法即可求一条出射光线的方法即可应用光学讲稿LrL’II’Q表示光线位置的坐标表示光线位置的坐标入射光线与光轴的焦点入射光线与光轴的焦点A到球面顶点的距离到球面顶点的距离L入射光线与光轴的夹角入射光线与光轴的夹角U像方相应地用像方相应地用L’、、U’表示表示应用光学讲稿球面半径球面半径r折射率折射率n、、n’入射光线坐标入射光线坐标L、、u 法线与光轴的夹角法线与光轴的夹角ψ已知已知 求求折射光线坐标折射光线坐标L’、、U’ 应用光学讲稿对对△△APC应用正弦定理得到应用正弦定理得到 由此得到由此得到 (2-1) 根据折射定律(根据折射定律(1-5),可由入射角),可由入射角I求得折射角求得折射角I' ((2-2)) 应用光学讲稿对对△△APC和和△△A'PC应用外角定理得到应用外角定理得到 ψ=U+I=U' +I'故故 U'=U+I-I' ((2-3)) 求得折射光线的一个坐标求得折射光线的一个坐标U'应用光学讲稿对对△△A'PC同样应用同样应用正弦定理正弦定理 故故 ((2-4)) L'即可求出。
即可求出L' ,,U'顺利求出顺利求出应用光学讲稿 转面公式转面公式计算完第一面以后计算完第一面以后,其折射光线就是第二面的入射光线其折射光线就是第二面的入射光线应用光学讲稿 §2-2 符号规则符号规则实际光学系统中,光线和球面位置可能是各种各样的实际光学系统中,光线和球面位置可能是各种各样的为了使公式普遍适用于各种情况,必须规定一套符号为了使公式普遍适用于各种情况,必须规定一套符号规则符号规则直接影响公式的形式规则符号规则直接影响公式的形式应用光学讲稿5O10应用光学讲稿各参量的符号规则规定如下:各参量的符号规则规定如下:1.线段:由左向右为正,由下向上为正,反之为负.线段:由左向右为正,由下向上为正,反之为负 规定线段的计算起点:规定线段的计算起点: L、、L'—由球面顶点算起到光线与光轴的交点由球面顶点算起到光线与光轴的交点 r—由球面顶点算起到球心由球面顶点算起到球心 d—由前一面顶点算起到下一面顶点由前一面顶点算起到下一面顶点应用光学讲稿d—由前一面顶点算起到下一面顶点。
由前一面顶点算起到下一面顶点应用光学讲稿 2.角度:.角度: 一律以锐角度量,顺时针转为正,逆时针转为负一律以锐角度量,顺时针转为正,逆时针转为负角度也要规定起始轴:角度也要规定起始轴:U、、U'—由光轴起转到光线;由光轴起转到光线; I、、I'—由光线起转到法线;由光线起转到法线; ψ—由光轴起转到法线,由光轴起转到法线, 应用光学讲稿应用时,先确定参数的正负号,代入公式计算应用时,先确定参数的正负号,代入公式计算算出的结果亦应按照数值的正负来确定光线的相对位算出的结果亦应按照数值的正负来确定光线的相对位置 推导公式时,也要使用符号规则推导公式时,也要使用符号规则注意注意 为了使导出的公式具有普遍性,推导公式时,几何为了使导出的公式具有普遍性,推导公式时,几何图形上各量一律标注其绝对值,永远为正图形上各量一律标注其绝对值,永远为正应用光学讲稿反射情形反射情形 看成是折射的一种特殊情形:看成是折射的一种特殊情形: n’= --n 把反射看成是把反射看成是n’= --n 时的折射时的折射。
往后推导公式时,只讲折射的公式;对于反射情形,往后推导公式时,只讲折射的公式;对于反射情形,只需将只需将n’用-用-n代入即可,无需另行推导代入即可,无需另行推导 应用光学讲稿- LrL’II’Q应用光学讲稿§2-3 球面近轴范围内成像性质和近轴光路计算公式球面近轴范围内成像性质和近轴光路计算公式 本节我们研究光线通过球面后的成像规律和特性本节我们研究光线通过球面后的成像规律和特性找出理想成像的范围找出理想成像的范围应用光学讲稿首先我们看一个例子首先我们看一个例子 共轴球面系统中的光路计算举例共轴球面系统中的光路计算举例 计算通过一个透镜的三条光线的光路计算通过一个透镜的三条光线的光路 n1=1.0 空气空气 r1=10 d1=5 n1'=n2=1.5163 玻璃(玻璃(K9)) r2=-50 n2'=1.0 空气空气 应用光学讲稿 A距第一面顶点的距离为距第一面顶点的距离为100,由,由A点计算三条和光点计算三条和光轴的夹角分别为轴的夹角分别为1、、2、、3度的光线:度的光线: 应用光学讲稿应用光学讲稿上面计算了由轴上物点上面计算了由轴上物点A发出的三条光线发出的三条光线计算结果表明,三条光线通过第一个球面折射后,和光轴的交点计算结果表明,三条光线通过第一个球面折射后,和光轴的交点到球面顶点的距离到球面顶点的距离L1’随着随着U1(绝对值)的增大而逐渐减小:(绝对值)的增大而逐渐减小:应用光学讲稿 这说明,由同一物点这说明,由同一物点A发出的光线,经球面折射后,发出的光线,经球面折射后,不交于一点。
球面成像不理想不交于一点球面成像不理想 U1越小,越小,L1’变化越慢当变化越慢当U1相当小时,相当小时,L1 ’几乎不几乎不变靠近光轴的光线聚交得较好靠近光轴的光线聚交得较好 光线离光轴很近则,光线离光轴很近则,U、、U'、、I、、I'都很小应用光学讲稿 正弦都展开成级数:正弦都展开成级数: 将展开式中将展开式中θ以上的项略去,而用角度本身来代替角度以上的项略去,而用角度本身来代替角度的正弦,即令公式组中的正弦,即令公式组中 sinU=u sinU'=u' sinI=i sinI'=i’得到新的公式组得到新的公式组 应用光学讲稿转面公式:转面公式: 上述公式称为近轴光线的光路计算公式上述公式称为近轴光线的光路计算公式 应用光学讲稿 靠近光轴的区域叫近轴区,近轴区域内的光靠近光轴的区域叫近轴区,近轴区域内的光线叫近轴光线线叫近轴光线•近轴光路计算公式有误差近轴光路计算公式有误差•相对误差范围相对误差范围•问题:问题:u=0的光线是不是近轴光线的光线是不是近轴光线应用光学讲稿 近轴光线的成像性质近轴光线的成像性质 1.轴上点轴上点由轴上同一物点发出的近轴光线,经过球面折射以后由轴上同一物点发出的近轴光线,经过球面折射以后聚交于轴上同一点聚交于轴上同一点 轴上物点用近轴光线成像时,符合理想轴上物点用近轴光线成像时,符合理想 计算近轴像点位置时,计算近轴像点位置时,u1可任取可任取应用光学讲稿假设假设B点位在近轴区,当用近轴光线成像时,也符合点位在近轴区,当用近轴光线成像时,也符合理想,像点理想,像点B’位在位在B点和球心的连线上(辅助轴上)点和球心的连线上(辅助轴上) 轴外点轴外点 结论:位于近轴区域内的物点,利用近轴光线成结论:位于近轴区域内的物点,利用近轴光线成像时,符合(近似地)点对应点的理想成像关系。
像时,符合(近似地)点对应点的理想成像关系应用光学讲稿 近轴光路计算的另一种形式近轴光路计算的另一种形式 光线的位置光线的位置: L,L',u,u' 在有些情况下,采用光线与球面的交点到光轴的距离在有些情况下,采用光线与球面的交点到光轴的距离h以以及光线与光轴的夹角及光线与光轴的夹角u,u‘表示比较方便表示比较方便, h的符号规则是:的符号规则是: h—以光轴为计算起点到光线在球面的投射点以光轴为计算起点到光线在球面的投射点 应用光学讲稿 将公式将公式 展开并移项得:展开并移项得: 同样可得:同样可得: 显然显然 ,代入上式,并在第一式两边同乘以代入上式,并在第一式两边同乘以n,,第二式两侧同乘以第二式两侧同乘以n’应用光学讲稿将以上二式相减,并考虑到将以上二式相减,并考虑到得:得: 转面公式转面公式第二公式两侧同乘以第二公式两侧同乘以u u1 1’, ,得:得: 这就是另一种形式的近轴光路计算公式。
这就是另一种形式的近轴光路计算公式应用光学讲稿 § 2-4近轴光学的基本公式和它的实际意义近轴光学的基本公式和它的实际意义 近轴区域内成像近似的符合理想近轴区域内成像近似的符合理想 即每一个物点对应一确定的像点即每一个物点对应一确定的像点 只要物距只要物距L确定,确定, 就可利用近轴光路计算公式得到,就可利用近轴光路计算公式得到, 而与中间变量而与中间变量u,,u’,,i,,i’,无关 可以将公式中的可以将公式中的u,,u’,,i,,i’消去,而把像点位置消去,而把像点位置 直接表示成物点位置直接表示成物点位置L和球面半径和球面半径r以及介质折射率以及介质折射率n,,n’的函数 应用光学讲稿 一一. 物像位置关系式物像位置关系式把公式(把公式(2-11)两侧同除以)两侧同除以h,得:,得: 将将 代入上式,即可得到以下常用的基代入上式,即可得到以下常用的基本公式:本公式: 或者或者应用光学讲稿 二二. 物像大小关系式物像大小关系式 用用y和和y’表示物点和像点到光轴的距离。
表示物点和像点到光轴的距离 符号规则:位于光轴上方的符号规则:位于光轴上方的y、、y’为正,反之为负为正,反之为负y’/y称为两共轭面间的垂轴放大率,用称为两共轭面间的垂轴放大率,用β表示表示 由图得由图得 或或 把公式(把公式(2-13)进行移项并通分,得:)进行移项并通分,得: 应用光学讲稿得得 这就是物像大小的关系式这就是物像大小的关系式 利用公式就可以由任意位置和大小的物体,求得单个利用公式就可以由任意位置和大小的物体,求得单个折射球面所成的近轴像的大小和位置折射球面所成的近轴像的大小和位置 对由若干个透镜组成的共轴球面系统,逐面应用公式就可对由若干个透镜组成的共轴球面系统,逐面应用公式就可以求得任意共轴系统所成的近轴像的位置和大小以求得任意共轴系统所成的近轴像的位置和大小 应用光学讲稿 三三.近轴光学基本公式的作用近轴光学基本公式的作用 近轴光学公式只适于近轴区域,有什么用?近轴光学公式只适于近轴区域,有什么用?第一,作为衡量实际光学系统成像质量的标准。
第一,作为衡量实际光学系统成像质量的标准 用近轴光学公式计算的像,称为实际光学系统的理想用近轴光学公式计算的像,称为实际光学系统的理想像第二,用它近以地表示实际光学系统所成像的位置和大小第二,用它近以地表示实际光学系统所成像的位置和大小 今后把近轴光学公式扩大应用到任意空间今后把近轴光学公式扩大应用到任意空间应用光学讲稿§2-5 共轴理想光学系统的基点共轴理想光学系统的基点——主平面和焦点主平面和焦点 近轴光学基本公式的缺点:物面位置改变时,需重近轴光学基本公式的缺点:物面位置改变时,需重新计算,若要求知道整个空间的物像对应关系,势必新计算,若要求知道整个空间的物像对应关系,势必要计算许多不同的物平面要计算许多不同的物平面 已知两对共轭面的位置和放大率,或者一对共轭面已知两对共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上的两对共轭点的位置,则的位置和放大率,以及轴上的两对共轭点的位置,则其任意物点的像点就可以根据这些已知的共轭面和共其任意物点的像点就可以根据这些已知的共轭面和共轭点来求得轭点来求得光学系统的成像性质可用这些基面和基点求得光学系统的成像性质可用这些基面和基点求得 最常用的是一对共轭面和轴上的两对共轭点。
最常用的是一对共轭面和轴上的两对共轭点应用光学讲稿一一 放大率放大率β=1的一对共轭面的一对共轭面——主平面主平面不同位置的共轭面对应着不同的放大率不同位置的共轭面对应着不同的放大率 放大率放大率β=1的一对共轭面称为主平面的一对共轭面称为主平面 物平面称为物方主平面,像平面称为像方主平面物平面称为物方主平面,像平面称为像方主平面 两主平面和光轴的交点分别称为物方主点和像方主点,两主平面和光轴的交点分别称为物方主点和像方主点,用用H、、H’表示,表示,H和和H’显然也是一对共轭点显然也是一对共轭点应用光学讲稿 主平面性质:主平面性质: 任意一条入射光线与物方主平面的交点高度和出射任意一条入射光线与物方主平面的交点高度和出射光线与像方主平面的交点高度相同光线与像方主平面的交点高度相同问题问题 物体位在二倍焦距处,像也位在二倍焦距处,大小物体位在二倍焦距处,像也位在二倍焦距处,大小相等,此物点和像点是不是主点相等,此物点和像点是不是主点?应用光学讲稿 二二 .无限远轴上物点和它所对应的像点无限远轴上物点和它所对应的像点F’——像方焦点像方焦点当轴上物点位于无限远时,它的像点位于当轴上物点位于无限远时,它的像点位于F’处。
处 F’称为像方焦点称为像方焦点 通过像方焦点垂直于光轴的平面称作像方焦平面通过像方焦点垂直于光轴的平面称作像方焦平面 应用光学讲稿像方焦平面和垂直于光轴的无限远的物平面共轭像方焦平面和垂直于光轴的无限远的物平面共轭像方焦点和像方焦平面性质:像方焦点和像方焦平面性质: 1、平行于光轴入射的任意一条光线,其共轭光线一定、平行于光轴入射的任意一条光线,其共轭光线一定通过通过F'点点 2、和光轴成一定夹角的光线通过光学系统后,必交于、和光轴成一定夹角的光线通过光学系统后,必交于像方焦平面上同一点像方焦平面上同一点应用光学讲稿 三三. 无限远的轴上像点和它所对应的物点无限远的轴上像点和它所对应的物点F——物方焦点物方焦点如果轴上某一物点如果轴上某一物点F,和它共轭的像点位于轴上无限远,,和它共轭的像点位于轴上无限远,则则F称为物方焦点称为物方焦点 通过通过F垂直于光轴的平面称为物方焦平面垂直于光轴的平面称为物方焦平面 它和无限远的垂直于光轴的像平面共轭它和无限远的垂直于光轴的像平面共轭应用光学讲稿 物方焦点和物方焦平面性质物方焦点和物方焦平面性质 1、过物方焦点入射的光线,通过光学系统后平、过物方焦点入射的光线,通过光学系统后平行于光轴出射行于光轴出射 2、由物方焦平面上轴外任意一点下发出的所有光、由物方焦平面上轴外任意一点下发出的所有光线,通过光学系统以后,对应一束和光轴成一定夹角线,通过光学系统以后,对应一束和光轴成一定夹角的平行光线。
的平行光线 应用光学讲稿 主平面和焦点之间的距离称为焦距主平面和焦点之间的距离称为焦距 由像方主点由像方主点H’到像方焦点到像方焦点F’的距离称为像方焦距,的距离称为像方焦距,用用f ’表示表示. 由物方主点由物方主点H到物方焦点到物方焦点F的距离称为物方焦距,用的距离称为物方焦距,用f表示f、、f'的符号规则的符号规则 f'—以以H'为起点,计算到为起点,计算到F',由左向右为正;,由左向右为正; f —以以H为起点,计算到为起点,计算到F,由左向右为正由左向右为正应用光学讲稿 一对主平面,加上无限远轴上物点和像方焦点一对主平面,加上无限远轴上物点和像方焦点F‘,,以及物方焦点以及物方焦点F和无限远轴上像点这两对共轭点,就和无限远轴上像点这两对共轭点,就是最常用的共轴系统的基点根据它们能找出物空间是最常用的共轴系统的基点根据它们能找出物空间任意物点的像任意物点的像 因此,如果已知一个共轴系统的一对主平面和两因此,如果已知一个共轴系统的一对主平面和两个焦点位置,它的成像性质就完全确定所以,可用个焦点位置,它的成像性质就完全确定。
所以,可用一对主平面和两个焦点位置来代表一个光学系统:一对主平面和两个焦点位置来代表一个光学系统:应用光学讲稿问题问题物方主点物方主点H和像方主点和像方主点H’是否是一对共轭点?是否是一对共轭点?物方焦点物方焦点F和像方焦点和像方焦点F’是否是一对共轭点?是否是一对共轭点?物方焦距物方焦距f和像方焦距和像方焦距f’是否是一对共轭线段?是否是一对共轭线段?应用光学讲稿 §2-6 单个折射球面的主平面和焦点单个折射球面的主平面和焦点 一一. 球面的主点位置球面的主点位置 主平面是垂轴放大率主平面是垂轴放大率β=1的一对共轭面的一对共轭面 或者或者 同时,由于它是一对共轭面,主点位置应满足同时,由于它是一对共轭面,主点位置应满足 球面的两个主点与球面顶点重合其物方主平面和球面的两个主点与球面顶点重合其物方主平面和像方主平面即为过球面顶点的切平面像方主平面即为过球面顶点的切平面应用光学讲稿 二二 球面焦距公式球面焦距公式 令:令:应用公式应用公式 同样物方焦点为同样物方焦点为 应用光学讲稿 二二 球面焦距公式球面焦距公式 球面反射的情形球面反射的情形 反射看作是反射看作是 的折射的折射 结论结论:反射球面的焦点位于球心和顶点的中点反射球面的焦点位于球心和顶点的中点应用光学讲稿§2-7 共轴球面系统的主平面和焦点共轴球面系统的主平面和焦点本节讨论任意共轴球面系统的主平面和焦点位置本节讨论任意共轴球面系统的主平面和焦点位置焦点位置:焦点位置: 平行于光轴入射的光线,通过光学系统后,与光轴的交点平行于光轴入射的光线,通过光学系统后,与光轴的交点就是像方焦点就是像方焦点F’ 应用光学讲稿焦点位置计算焦点位置计算利用近轴光路计算公式,计算利用近轴光路计算公式,计算 公式(公式(2-1)和()和(2-6))无法应用无法应用 应用光学讲稿焦点位置计算焦点位置计算 把平行于光轴入射的近轴光线逐面计算,最后求得出射光把平行于光轴入射的近轴光线逐面计算,最后求得出射光线的坐标线的坐标 和和 ,从而找出像方焦点,从而找出像方焦点F’ 像方焦点像方焦点F’离开最后一面顶点离开最后一面顶点 的距离的距离 称为像方顶焦距称为像方顶焦距 应用光学讲稿像方主平面位置像方主平面位置 入射光线高度入射光线高度h1,出射光线延长线与像方主平面的交点高,出射光线延长线与像方主平面的交点高度也等于度也等于h1 延长入射光线和出射光线,其交点必定位在像方主平面上延长入射光线和出射光线,其交点必定位在像方主平面上 焦距公式焦距公式 应用光学讲稿物方焦点和物方主平面位置计算物方焦点和物方主平面位置计算 将光学系统翻转,按计算像方焦点和像方主平面同样的方将光学系统翻转,按计算像方焦点和像方主平面同样的方法,计算出的结果就是物方焦点和物方主平面的结果法,计算出的结果就是物方焦点和物方主平面的结果第一面顶点到物方焦点第一面顶点到物方焦点F的距离的距离 称为物方顶焦距称为物方顶焦距 应用光学讲稿§2-3中的计算结果中的计算结果 n1=1.0 空气空气 r1=10 d1=5 n1'=n2=1.5163 玻璃(玻璃(K9)) r2=-50 n2'=1.0 空气空气 应用光学讲稿 §2-8 用作图法求光学系统的理想像用作图法求光学系统的理想像 一对主平面和两个焦点能够表示共轴系统的成像一对主平面和两个焦点能够表示共轴系统的成像性质。
性质 主平面和焦点的位置是用近轴光学公式计算出来主平面和焦点的位置是用近轴光学公式计算出来的,它代表实际光学系统在近轴区域内的成像性质的,它代表实际光学系统在近轴区域内的成像性质 如果把主平面和焦点的应用范围扩大到整个空间,如果把主平面和焦点的应用范围扩大到整个空间,则所求出来的像,就称为实际光学系统的理想像则所求出来的像,就称为实际光学系统的理想像如何根据已知的主平面和焦点的位置,用作图法求任如何根据已知的主平面和焦点的位置,用作图法求任意物点的理想像意物点的理想像应用光学讲稿 已知两对共轭面的位置和放大率,或者一对共轭面已知两对共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上的两对共轭点的位置,则的位置和放大率,以及轴上的两对共轭点的位置,则其任意物点的像点就可以根据这些已知的共轭面和共其任意物点的像点就可以根据这些已知的共轭面和共轭点来求得轭点来求得光学系统的成像性质可用这些基面和基点求得光学系统的成像性质可用这些基面和基点求得 最常用的是一对共轭面和轴上的两对共轭点最常用的是一对共轭面和轴上的两对共轭点即即 一对主平面和轴上的两对共轭点一对主平面和轴上的两对共轭点 轴上无限远物点和像方焦点轴上无限远物点和像方焦点 物方焦点和轴上无限远像点物方焦点和轴上无限远像点应用光学讲稿求像:只须找出由物点发出的两条光线的共轭光线,求像:只须找出由物点发出的两条光线的共轭光线,交点就是该物点的像。
最常用的两条特殊光线是交点就是该物点的像最常用的两条特殊光线是:1. 通过物点和物方焦点通过物点和物方焦点F入射的光线入射的光线 ,共轭光线平行于光,共轭光线平行于光轴出射 2.通过物点平行与光轴入射的光线通过物点平行与光轴入射的光线 ,共轭光线通过像,共轭光线通过像方焦点方焦点F' 二共轭光线交点二共轭光线交点B ',即为,即为B点的像应用光学讲稿作图法求像规则作图法求像规则1.实物,实像,实际光线用实线;实物,实像,实际光线用实线;2.虚物,虚像,光线的延长线用虚线;虚物,虚像,光线的延长线用虚线;3.按符号规则标准好物和像按符号规则标准好物和像作业:应用光学教材第作业:应用光学教材第47页第页第2,,3,,4,,5题题应用光学讲稿作图法求像实例作图法求像实例应用光学讲稿例例应用光学讲稿求轴上求轴上物点物点A的像的像注意:注意: AM线段的像不是线段的像不是A’M’ 当物点当物点A沿着沿着AM趋于趋于B时,像点由时,像点由A’趋于正无限远趋于正无限远当物点当物点M沿着沿着MA趋于趋于B时,像点由时,像点由M’趋于负无限远趋于负无限远AM线段的像由线段的像由A’到正无限远和由到正无限远和由M’到负无限远的两条线段组成到负无限远的两条线段组成应用光学讲稿应用光学讲稿 §2-9 理想光学系统的物象关系式理想光学系统的物象关系式作图法求像有缺陷,需准确确定像的位置作图法求像有缺陷,需准确确定像的位置一一 牛顿公式牛顿公式 物点和像点位置的坐标:物点和像点位置的坐标:x——以物方焦点以物方焦点F为原点到物为原点到物点点AX’——以像方焦点以像方焦点F’为原点算到像点为原点算到像点A' 应用光学讲稿由图有:由图有: 将以上二式交叉相乘,得将以上二式交叉相乘,得应用光学讲稿二二. 高斯公式高斯公式表示物点和像点位置的坐标为:表示物点和像点位置的坐标为: ——以物方主点以物方主点H为原点算到物点为原点算到物点A;; ——以像方主点以像方主点H'为原点算到像点为原点算到像点A'。
关系如下:关系如下: 代入牛顿公式代入牛顿公式应用光学讲稿化简,得化简,得 同理同理 这就是高斯公式由物点位置和大小(这就是高斯公式由物点位置和大小( )可求)可求出像点位置和大小(出像点位置和大小( )应用光学讲稿物像关系式的应用物像关系式的应用---解应用题解应用题步骤:步骤:1:写出已知条件和要求解的问题:写出已知条件和要求解的问题2:尽可能画出图形:尽可能画出图形3:正确标注图形:正确标注图形4:推导公式:推导公式5:求解结果:求解结果作业:应用光学教材第作业:应用光学教材第47页第页第6,,7,,8,,9题题 第第48页第页第13,,14,,15,,16,,17题题应用光学讲稿例题例题1. 已知:已知: 求:求:应用光学讲稿例题例题2. 一直径为一直径为200毫米的玻璃球,折射率毫米的玻璃球,折射率n=1.53,球内有一气泡,从最近方向去看,,球内有一气泡,从最近方向去看,在球面和球心的中间,求气泡距球心的距离。
在球面和球心的中间,求气泡距球心的距离应用光学讲稿例题例题3. 显微镜物镜放大率为显微镜物镜放大率为0.5,焦距,焦距f’=-f=200,试求:,试求:工作距离(物平面到物镜的距离)以及物像之间的距工作距离(物平面到物镜的距离)以及物像之间的距离应用光学讲稿例题例题4. 天象仪太阳放映系统用改变可变光阑直径大小天象仪太阳放映系统用改变可变光阑直径大小的方法实现连续改变太阳的大小可变光阑最小口的方法实现连续改变太阳的大小可变光阑最小口径为径为0.6毫米,要求在天幕上对应的像直径为毫米,要求在天幕上对应的像直径为19.4毫毫米,天幕离放映系统距离为米,天幕离放映系统距离为15米,求放映系统的焦米,求放映系统的焦距和光阑位置距和光阑位置应用光学讲稿例题例题5. 有一光源通过辅助正透镜和被测负透镜成像,有一光源通过辅助正透镜和被测负透镜成像,当屏幕移动到距离负透镜当屏幕移动到距离负透镜100毫米处时,获得光源像,毫米处时,获得光源像,去掉负透镜后,屏幕前移去掉负透镜后,屏幕前移25毫米时,重新获得光源毫米时,重新获得光源像,求负透镜焦距为多少?像,求负透镜焦距为多少? 应用光学讲稿例题例题6. 某照相机可拍摄最近距离为某照相机可拍摄最近距离为1米,装上焦距米,装上焦距f’=500毫米的近拍镜后,能拍摄的最近距离为多少毫米的近拍镜后,能拍摄的最近距离为多少?(假设近拍镜和照相镜头密接)。
假设近拍镜和照相镜头密接) 应用光学讲稿例题例题7. 离水面离水面1米处有一条鱼,现用焦距米处有一条鱼,现用焦距f’=75毫米的毫米的照相物镜拍摄,照相物镜的物方焦点离水面照相物镜拍摄,照相物镜的物方焦点离水面1米,求米,求((1)垂轴放大率为多少?()垂轴放大率为多少?(2)照相底片离照相物)照相底片离照相物镜像方焦点镜像方焦点F’多远?多远?应用光学讲稿例题例题8.一个薄透镜对一物体成像,物面到像面的距离为一个薄透镜对一物体成像,物面到像面的距离为625毫米,垂轴放大率为毫米,垂轴放大率为-1/4,现在移动透镜,使垂轴,现在移动透镜,使垂轴放大率为放大率为-4,但同时要求原有的物面和像面以及它们,但同时要求原有的物面和像面以及它们之间的距离不变,求:透镜的焦距为多少?透镜移动之间的距离不变,求:透镜的焦距为多少?透镜移动的距离为多少?以及移动的方向?的距离为多少?以及移动的方向?应用光学讲稿例题例题9. 在一个生物芯片检测系统中,直径为在一个生物芯片检测系统中,直径为1毫米的生毫米的生物芯片位在一个焦距为物芯片位在一个焦距为13毫米数值孔径为毫米数值孔径为0.6的成像物的成像物镜的物方焦平面处,在离此成像透镜后面镜的物方焦平面处,在离此成像透镜后面100毫米处放毫米处放置一个中继透镜,生物芯片通过成像透镜和中继透镜置一个中继透镜,生物芯片通过成像透镜和中继透镜后成像在后成像在1/4英寸的英寸的CCD靶面上(一英寸等于靶面上(一英寸等于25.4毫米,毫米,CCD探测器靶面长与宽之比为探测器靶面长与宽之比为4:3),物体所成像在探),物体所成像在探测器靶面上为内接圆。
求此中继透镜的焦距为多少?测器靶面上为内接圆求此中继透镜的焦距为多少?相对孔径为多少?(两个透镜均视为薄透镜)相对孔径为多少?(两个透镜均视为薄透镜)应用光学讲稿例题例题10. . 为了将微小物体放大成像并在监视器屏幕上观察,为了将微小物体放大成像并在监视器屏幕上观察,可以将微小物体通过显微物镜所成的像再经一中继系统成可以将微小物体通过显微物镜所成的像再经一中继系统成像在电荷耦合器件像在电荷耦合器件CCD摄像系统的硅靶上,经转换将图像摄像系统的硅靶上,经转换将图像传到监视器屏幕上若已知微小物体长为传到监视器屏幕上若已知微小物体长为0.5毫米,显微物毫米,显微物镜的放大倍率为镜的放大倍率为40××,,CCD硅靶对角线长硅靶对角线长8毫米,微小物体毫米,微小物体通过显微物镜的像距硅靶的距离为通过显微物镜的像距硅靶的距离为210毫米,要求将上述微毫米,要求将上述微小物体经两次成像后充满硅靶对角线,试求此中继光学系小物体经两次成像后充满硅靶对角线,试求此中继光学系统的焦距及离硅靶的距离统的焦距及离硅靶的距离 应用光学讲稿例题例题11. 一个成像光学系统由相隔一个成像光学系统由相隔50毫米,焦距毫米,焦距 =100毫米、毫米、 =200毫米的两个薄透镜组成,毫米的两个薄透镜组成,直径为直径为5毫米的物体位在第一透镜的物方焦平面上。
求毫米的物体位在第一透镜的物方焦平面上求物体通过这两个薄透镜后所成像的大小为多少?如果物体通过这两个薄透镜后所成像的大小为多少?如果要求保持两个透镜的间隔不变,所成的像平面与第二要求保持两个透镜的间隔不变,所成的像平面与第二透镜的距离即像距变为透镜的距离即像距变为250毫米,采用移动物平面的方毫米,采用移动物平面的方法,问物平面距离第一透镜的距离为多少?法,问物平面距离第一透镜的距离为多少? 应用光学讲稿1、、 例例题题12. 某某系系统统由由两两个个薄薄透透镜镜组组成成,,第第一一透透镜镜焦焦距距为为--14毫毫米米,,第第二二透透镜镜焦焦距距为为42毫毫米米,,二二者者相相距距32毫毫米米,,若若物物点点位位于于第第一一透透镜镜后后方方50毫毫米米处处,,求求⑴⑴物物点点通通过过整整个个系系统统后后距距第第二二透透镜镜的的距距离离;;⑵⑵此此时时系系统统总总的的垂垂轴轴放放大大率率;;⑶⑶若若第第一一透透镜镜右右移移5毫毫米米,,为为保保持持像像面面不不动动,,第第二二透透镜镜应应向向哪哪个个方方向移动?移动多少距离?此时新的总垂轴放大率为多少?向移动?移动多少距离?此时新的总垂轴放大率为多少?应用光学讲稿 § 2-10 光学系统的放大率光学系统的放大率 共轴理想光学系统只是对垂直于光轴的平面所成的像共轴理想光学系统只是对垂直于光轴的平面所成的像才和物相似,绝大多数光学系统都只是对垂直于光轴才和物相似,绝大多数光学系统都只是对垂直于光轴的某一确定的物平面成像。
共轭面的成像性质是用这的某一确定的物平面成像共轭面的成像性质是用这对共轭面的放大率来表示的对共轭面的放大率来表示的 应用光学讲稿 一一. 垂轴放大率垂轴放大率 垂轴放大率代表共轭面像高和物高之比垂轴放大率代表共轭面像高和物高之比 应用光学讲稿二二 . 轴向放大率轴向放大率 当物平面沿着光轴移动微小的距离当物平面沿着光轴移动微小的距离dx时,像时,像平面相应地移动距离平面相应地移动距离dx’,比例,比例 称为光学系称为光学系统的轴向放大率,用统的轴向放大率,用α表示 应用光学讲稿 ((1)高斯公式)高斯公式 根据公式根据公式 求上式对求上式对l和和l’的微分,得的微分,得 dx’/dx和和dl’/dl相等,所以有相等,所以有 应用光学讲稿((2)牛顿公式)牛顿公式根据公式根据公式 求上式对求上式对x和和x'的微分,得的微分,得 由此得到由此得到 应用光学讲稿 三三 角放大率角放大率 角放大率是共轭面上的轴上点角放大率是共轭面上的轴上点A发出的光线通过发出的光线通过光学系统后,与光轴的夹角光学系统后,与光轴的夹角U’的正切和对应的入射光的正切和对应的入射光线与光轴所成的夹角线与光轴所成的夹角U的正切之比的正切之比对近轴光线来说,对近轴光线来说,U和和U'趋近于零,这时趋近于零,这时tgU'和和tgU趋趋近于近于u'和和u。
由此得到近轴范围内的角放大率公式由此得到近轴范围内的角放大率公式 应用光学讲稿 ((1)高斯公式)高斯公式代入角放大率定义式,得代入角放大率定义式,得 角放大率只和角放大率只和 、、 有关因此,其大小仅取决于共有关因此,其大小仅取决于共轭面的位置,而与光线的会聚角无关,所以它与近轴轭面的位置,而与光线的会聚角无关,所以它与近轴光线的角放大率相同光线的角放大率相同 应用光学讲稿((2)牛顿公式)牛顿公式 因为因为 由此得到由此得到进而有进而有 应用光学讲稿 四四. 三种放大率的关系三种放大率的关系 三种放大率并非彼此独立,而是互相联系的三种放大率并非彼此独立,而是互相联系的。
由于由于 所以所以 同时同时比较,就得比较,就得 应用光学讲稿§2-11 物像空间不变式物像空间不变式 物像空间不变式物像空间不变式: 拉格朗日一亥姆霍兹不变式拉格朗日一亥姆霍兹不变式代表实际光学系统在近轴范围内成像的一种普遍特性代表实际光学系统在近轴范围内成像的一种普遍特性 我们先考察单个折射球面的情形我们先考察单个折射球面的情形然后再考察共轴球面系统然后再考察共轴球面系统 应用光学讲稿根据单个折射球面近轴范围内的放大率公式根据单个折射球面近轴范围内的放大率公式 当光线位在近轴范围内时:当光线位在近轴范围内时:由以上二式得由以上二式得 由此得到由此得到 应用光学讲稿以上是单个折射球面物像空间存在的关系。
对于由多以上是单个折射球面物像空间存在的关系对于由多个球面组成的共轴系统来说有个球面组成的共轴系统来说有由此得出由此得出对任意一个像空间来说,乘积对任意一个像空间来说,乘积n'u ' y'总是一个常数,总是一个常数,用用J表示:表示: J=nuy=n'u'y' 这就是物像空间不变式这就是物像空间不变式J称为物像空间不变量,或拉称为物像空间不变量,或拉格朗日不变量格朗日不变量 应用光学讲稿把上述近轴范围内的物像空间不变式推广到整个空把上述近轴范围内的物像空间不变式推广到整个空间,就得到理想光学系统的物像空间不变式间,就得到理想光学系统的物像空间不变式 角放大率等于:角放大率等于:得得这就是理想光学系统的物像关系不变式这就是理想光学系统的物像关系不变式 当物像空间的介质相同(如空气)时,变成:当物像空间的介质相同(如空气)时,变成: ytgU=y'tgU'反射时,每经过一次反射,介质的折射率的符号改变一次。
反射时,每经过一次反射,介质的折射率的符号改变一次奇数次反射,符号相反;偶数次反射,则符号相同奇数次反射,符号相反;偶数次反射,则符号相同应用光学讲稿物像空间不变式的物理意义物像空间不变式的物理意义能量守恒能量守恒 当折射率一定时,输入的总能量是当折射率一定时,输入的总能量是nuy,输出的总,输出的总能量是能量是n’u’y’,根据能量守恒,二者相等根据能量守恒,二者相等若若y’增大,则增大,则u’减小,即像增大,则变暗减小,即像增大,则变暗若若u’增大,则增大,则y’减小,即要像变亮,则像需减小减小,即要像变亮,则像需减小应用光学讲稿 §2-12物方焦距和像方焦距的关系物方焦距和像方焦距的关系 本节是物像空间不变式的应用本节是物像空间不变式的应用 共轴理想光学系统的像方焦距和物方焦距之间有一共轴理想光学系统的像方焦距和物方焦距之间有一定的关系定的关系 先考察单个折射球面的情形先考察单个折射球面的情形 应用光学讲稿然后考察整个系统的情形然后考察整个系统的情形由物像空间不变式得由物像空间不变式得 根据理想光学系统的垂轴放大率公式根据理想光学系统的垂轴放大率公式 将以上二式比较,得到:将以上二式比较,得到: 由图看到:由图看到: 或者或者 将以上关系代入上式简化后得到:将以上关系代入上式简化后得到: 应用光学讲稿一个光学系统的像方焦距和物方焦距之比等于像空间一个光学系统的像方焦距和物方焦距之比等于像空间和物空间介质的折射率之比,但符号相反。
和物空间介质的折射率之比,但符号相反 位在空气中的光学系统,因位在空气中的光学系统,因n1=n'k=1,则上式变为:,则上式变为: 位于空气中的光学系统,物方和像方焦距大小相位于空气中的光学系统,物方和像方焦距大小相等,符号相反等,符号相反 绝大多数光学系统都位在空气中,有关的物像关系绝大多数光学系统都位在空气中,有关的物像关系公式都可以简化公式都可以简化 应用光学讲稿 一一 物像位置公式物像位置公式1.牛顿公式:牛顿公式: 2.高斯公式:高斯公式: 二二 放大率公式放大率公式1.垂轴放大率:垂轴放大率: 2.轴向放大率:轴向放大率: 3.角放大率:公式形式不变。
角放大率:公式形式不变 应用光学讲稿 三种放大率之间的关系三种放大率之间的关系 前面已经得到,三种放大率之间存在以下关系:前面已经得到,三种放大率之间存在以下关系: 由物像空间不变式还可以得到垂轴放大率和角放由物像空间不变式还可以得到垂轴放大率和角放大率之间的下列关系大率之间的下列关系或者或者应用光学讲稿 当物像空间介质的折射率当物像空间介质的折射率n,,n'一定的时候,对某一定的时候,对某一对共轭面只要给定任意一个放大率,其它二个放大一对共轭面只要给定任意一个放大率,其它二个放大率便随之确定率便随之确定 当物像空间折射率相等时,得到当物像空间折射率相等时,得到 则可得到则可得到应用光学讲稿 § 2-13 节平面和节点节平面和节点 在理想光学系统中,除一对主平面在理想光学系统中,除一对主平面H、、H'和两个和两个焦点焦点F、、F'外,有时还用到另一对特殊的共轭面,即节外,有时还用到另一对特殊的共轭面,即节平面。
平面从公式从公式 角放大率等于角放大率等于1的共轭面称为节平面的共轭面称为节平面 物方节平面物方节平面, 像方节平面像方节平面 物方节点,物方节点, 像方节点像方节点 分别以分别以J、、J'表示表示 应用光学讲稿节点性质:节点性质:凡过物方节点凡过物方节点J的光线,的光线,其出射光线必过像方节点其出射光线必过像方节点J’,,并且和入射光线相平行并且和入射光线相平行 应用光学讲稿 节点位置节点位置根据角放大率公式,根据角放大率公式,将将γ=1代入,即可找到节点位置代入,即可找到节点位置因此对节点因此对节点J、、J'有:有:如果物像空间介质相等,有如果物像空间介质相等,有f '= -f,,因此:因此: 这时这时J与与H重合,重合,J'与与H'重合,即主平面也就是节平面重合,即主平面也就是节平面应用光学讲稿 作图法求理想像时,可用来作第三条特殊光线作图法求理想像时,可用来作第三条特殊光线。
由于节点具有入射和出射光线彼此平行的特性,由于节点具有入射和出射光线彼此平行的特性,所以经常用它来测定光学系统的基点位置所以经常用它来测定光学系统的基点位置 应用光学讲稿 假定将一束平行光射入光学系统,并使光学系统绕通过假定将一束平行光射入光学系统,并使光学系统绕通过像方节点像方节点J’的轴线左右摆动,根据节点的性质,出射光线的轴线左右摆动,根据节点的性质,出射光线J’P’的方向和位置不会因光学系统的摆动而发生改变的方向和位置不会因光学系统的摆动而发生改变 利用这种性质,一边摆动光学系统,同时连续改变转轴利用这种性质,一边摆动光学系统,同时连续改变转轴位置,当像点不动时,转轴的位置便是像方节点的位置位置,当像点不动时,转轴的位置便是像方节点的位置颠倒光学系统,重复上述操作,便可得到物方节点的位颠倒光学系统,重复上述操作,便可得到物方节点的位置应用光学讲稿 周视照相机周视照相机 通常用来拍摄大型团体照片的周视照相机也是应通常用来拍摄大型团体照片的周视照相机也是应用节点的性质构成的。
用节点的性质构成的 应用光学讲稿 例:求单个折射球面的节点位置例:求单个折射球面的节点位置已知:已知:r = -50, n=1.5, n’=1求:求:J,,J’的位置的位置解:解: 因为因为xJ=f’, xJ’=f,又,又H,,H’和球面顶点和球面顶点O重合,所重合,所以应先求以应先求f,,f’,找到,找到F,,F’位置,再求位置,再求J,,J’位置位置物方和像方节点均与球心重合物方和像方节点均与球心重合应用光学讲稿 §2-14无限远物体理想像高的计算公式无限远物体理想像高的计算公式问题:如何求像高?问题:如何求像高?但是,当物体位于无限远时,这些方法都不能采用但是,当物体位于无限远时,这些方法都不能采用当物体位在有限远时,有两种方法:当物体位在有限远时,有两种方法:1. 如果已知主面,焦点和焦距,则可利用高斯公式和如果已知主面,焦点和焦距,则可利用高斯公式和牛顿公式:牛顿公式:2. 如果已知具体的结构参数,半径,厚度,折射率,如果已知具体的结构参数,半径,厚度,折射率,则可追迹轴上的近轴光线则可追迹轴上的近轴光线应用光学讲稿 物体位于无限远时,无限远的物平面所成的像为物体位于无限远时,无限远的物平面所成的像为像方焦平面,物平面上每一点对应的光束都是一束平像方焦平面,物平面上每一点对应的光束都是一束平行光线,过物方焦点行光线,过物方焦点F并与光轴成并与光轴成ω夹角入射的光线夹角入射的光线FI,射出后,射出后平行于光轴。
与像方焦面的平行于光轴与像方焦面的交点是无限远轴外物交点是无限远轴外物点点B的像点 如位于空气中,如位于空气中,f’=-f:: 这就是无限远物体理想像高计算公式这就是无限远物体理想像高计算公式应用光学讲稿 应用:计算分划板刻度应用:计算分划板刻度某望远镜物镜焦距为某望远镜物镜焦距为375毫米,半视场角为毫米,半视场角为2.5°,分划板上间,分划板上间隔按隔按10密位刻制,求分划板刻线间隔和最大直径密位刻制,求分划板刻线间隔和最大直径解:解: 1密位密位=360º/6000=0.06º,,10密位密位=0.6º分划板直径为:分划板直径为:应用光学讲稿 无限远的像所对应的物高计算公式无限远的像所对应的物高计算公式无限远的轴外像点对应一束与光轴有一定夹角的平行无限远的轴外像点对应一束与光轴有一定夹角的平行光线,我们用光束与光轴的夹角光线,我们用光束与光轴的夹角ω'来表示无限远轴外来表示无限远轴外像点的位置像点的位置ω'的符号规则同的符号规则同ω 根据光路可逆定理,很容易得到根据光路可逆定理,很容易得到 此公式常用于视场仪分划刻度的计算。
此公式常用于视场仪分划刻度的计算应用光学讲稿 例:某视场仪焦距为例:某视场仪焦距为250毫米,计算与毫米,计算与5°相对应的相对应的刻线离中心的距离,若视场仪最大视场角为刻线离中心的距离,若视场仪最大视场角为±26.5°,,问分划板直径为多少?问分划板直径为多少?分划板直径为分划板直径为解:解:应用光学讲稿 平行光管:能够产生人造无限远目标的仪器平行光管:能够产生人造无限远目标的仪器例:一平行光管焦距为例:一平行光管焦距为550毫米,分划板上一对间隔为毫米,分划板上一对间隔为13.75毫米的刻线经被测透镜后,所成像的大小为毫米的刻线经被测透镜后,所成像的大小为2.4毫毫米,求被测透镜的焦距米,求被测透镜的焦距 解:解:应用光学讲稿 §2-15 理想光学系统的组合理想光学系统的组合例如例如 望远系统望远系统 显微系统显微系统 变焦距系统变焦距系统由两个已知的光学系统,求它们的组合系统的成像性由两个已知的光学系统,求它们的组合系统的成像性质。
质 在光学系统的应用中,经常把两个或两个以上的光学在光学系统的应用中,经常把两个或两个以上的光学系统组合在一起使用在计算和分析一个复杂的光学系统组合在一起使用在计算和分析一个复杂的光学系统时,为了方便起见,通常将一个光学系统分成若系统时,为了方便起见,通常将一个光学系统分成若干部分,分别进行计算,最后再把它们组合在一起干部分,分别进行计算,最后再把它们组合在一起 应用光学讲稿 一个共轴理想光学系统的成像性质,可以用主平面一个共轴理想光学系统的成像性质,可以用主平面和焦点来代表和焦点来代表 根据两个已知系统的主平面和焦点位置,求组合系根据两个已知系统的主平面和焦点位置,求组合系统的主平面和焦点的位置统的主平面和焦点的位置 应用光学讲稿 一一. 焦点位置公式焦点位置公式 Δ的符号规则为:的符号规则为:Δ——以以F'1为起点,计算到为起点,计算到F2,由左向右为正,由左向右为正 组合系统的焦距为组合系统的焦距为f和和f',焦点为,焦点为F和和F' 假定假定:两分系统的焦距分别为两分系统的焦距分别为f '1、、f 1和和f ' 2,,f 2 两分系统间的相对位置用第一系统的像方焦点两分系统间的相对位置用第一系统的像方焦点F ' 1 到第二系到第二系统的物方焦点统的物方焦点F 2的距离的距离Δ表示表示. 应用光学讲稿 像方焦点像方焦点F’的位置的位置焦点的性质:平行于光轴入射的光线,通过第一个系统后,一定通焦点的性质:平行于光轴入射的光线,通过第一个系统后,一定通过过F ’ 1 ;然后再通过第二个光学系统,出射光线与光轴的交点;然后再通过第二个光学系统,出射光线与光轴的交点F ’ ,就是组合系统的像方焦点。
就是组合系统的像方焦点对于第二个光学系统,对于第二个光学系统, F ’ 1和和F’是一对共轭点是一对共轭点 应用牛顿公式,即可求出像方焦点应用牛顿公式,即可求出像方焦点 F’应用光学讲稿x 符号规则:以符号规则:以F2为起点计算到为起点计算到F'1 Δ 符号规则:以符号规则:以F'1 为起点计算到为起点计算到F2,所以,所以 x=-Δx ' :由:由F'2到到F'的距离为了区别,用的距离为了区别,用x'F表示符号规则为:以表示符号规则为:以F'2为起点计算到为起点计算到F'将以上关系代入上式,得将以上关系代入上式,得利用上式就可求得利用上式就可求得F'的位置的位置 牛顿公式牛顿公式应用光学讲稿 物方焦点物方焦点F的位置的位置 通过物方焦点通过物方焦点F的光线经过整个系统后平行于光轴的光线经过整个系统后平行于光轴射出射出, 所以它一定通过所以它一定通过F2因此,组合系统的物方焦点因此,组合系统的物方焦点F和第二个系统的和第二个系统的F2对第一个系统共轭,可应用牛顿公对第一个系统共轭,可应用牛顿公式式 xx'=f1f1'按照符号规则,从图得知按照符号规则,从图得知 x’=Δ 应用光学讲稿按照符号规则,按照符号规则,x’=Δ x就是由就是由F1到到F的距离,用的距离,用xF表示,它的符号规则为:表示,它的符号规则为:以以F1为起点计算到为起点计算到F,由左向右为正。
因此有,由左向右为正因此有 利用上式即可求得组合系统的物方焦点利用上式即可求得组合系统的物方焦点F的位置 应用光学讲稿 二二. 焦距公式焦距公式 焦点位置确定后,只要求出焦距,主平面的位置焦点位置确定后,只要求出焦距,主平面的位置便随之确定便随之确定 平行于光轴人射的光线和出射光线的延长线的交点平行于光轴人射的光线和出射光线的延长线的交点M’,一定位于像方主平面上一定位于像方主平面上由图得,由图得,△△M'F'H'∽△∽△I2'H2'F',,△△I2H2F1'∽△∽△I1'H1'F1'应用光学讲稿其中:其中:对于物方焦距,直接应用物方和像方焦距的关系得出对于物方焦距,直接应用物方和像方焦距的关系得出应用光学讲稿两个系统间的相对位置有时用两个主平面之间的距离两个系统间的相对位置有时用两个主平面之间的距离d表示d的符号规则为:以第一个系统的像方主点的符号规则为:以第一个系统的像方主点H1'为起点,计算到为起点,计算到第二个系统的物方主点第二个系统的物方主点H2',由左向右为正。
由左向右为正 d=f1'+Δ-f2 或者或者 Δ=d-f1'+f2 代入上面的焦距公式,得代入上面的焦距公式,得将将 代入上式,公式两边同乘以代入上式,公式两边同乘以n3,得,得应用光学讲稿当两个系统位于同一种介质(例如空气)中时,有当两个系统位于同一种介质(例如空气)中时,有n1=n2=n3,得,得通常用通常用φ表示像方焦距的倒数,表示像方焦距的倒数, φ =1/f’,称为光焦度这,称为光焦度这样,上式可写成样,上式可写成当两个光学系统主平面间的距离当两个光学系统主平面间的距离d为零,即在密接薄透镜组为零,即在密接薄透镜组的情况下:的情况下:作业:应用光学教材第作业:应用光学教材第47页第页第10,,11,,12题题密接薄透镜组的总光焦度等于两个薄透镜的光焦度之和密接薄透镜组的总光焦度等于两个薄透镜的光焦度之和应用光学讲稿§2-16 理想光学系统中的光路计算公式理想光学系统中的光路计算公式 前面我们已经讨论过球面系统的光路计算问题,前面我们已经讨论过球面系统的光路计算问题,在那里,我们已知球面系统的结构参数,求折射光在那里,我们已知球面系统的结构参数,求折射光线。
线 现在讨论理想光学系统的光路计算问题,我们已现在讨论理想光学系统的光路计算问题,我们已知的是每个分光学系统的主面和焦点位置,计算任知的是每个分光学系统的主面和焦点位置,计算任意一条入射光线意一条入射光线应用光学讲稿单个单个理想光学系统的光路计算公式理想光学系统的光路计算公式 已知:已知:h,u,f,f’求:求:u’ 根据公式根据公式 同时有同时有 可得可得 当当n’=n=1时,有时,有应用光学讲稿对于近轴光线有对于近轴光线有过渡公式过渡公式应用光学讲稿对于焦点和焦距,计算一条平行于光轴的光线,有对于焦点和焦距,计算一条平行于光轴的光线,有终结公式终结公式像距为像距为应用光学讲稿1.求组合系统的主平面,焦点位置求组合系统的主平面,焦点位置理想光学系统光路计算公式应用理想光学系统光路计算公式应用2.求像平面的位置和放大率求像平面的位置和放大率3.计算光学零件的通光口径计算光学零件的通光口径应用光学讲稿单透镜是组成复杂光学系统的基本元件,经常需要计单透镜是组成复杂光学系统的基本元件,经常需要计算单透镜的主平面和焦点位置。
算单透镜的主平面和焦点位置本节是理想光学系统的组合一节的具体应用本节是理想光学系统的组合一节的具体应用§2-17单透镜的主平面和焦点位置的计算公式单透镜的主平面和焦点位置的计算公式 应用光学讲稿已知:已知:求:主平面位置,焦点位置求:主平面位置,焦点位置表示主平面位置,焦点位置:表示主平面位置,焦点位置:物方主平面:物方主平面: 以以O1为起点到为起点到H像方主平面:像方主平面: 以以O2为起点到为起点到H’应用光学讲稿对于单透镜每个面,有对于单透镜每个面,有代入组合系统的焦距公式代入组合系统的焦距公式有有应用光学讲稿由图有由图有即即对于单透镜每个面,有对于单透镜每个面,有全部代入有全部代入有应用光学讲稿我们用我们用a表示两个主平面之间的距离,表示两个主平面之间的距离,a从从H到到H’,有,有代入并简化,有代入并简化,有应用光学讲稿绝大多数实际应用的透镜的厚度和两半径之差相比要绝大多数实际应用的透镜的厚度和两半径之差相比要小的多,可以将公式简化为小的多,可以将公式简化为应用光学讲稿左图的误差小,右图的误差大左图的误差小,右图的误差大近似公式的误差近似公式的误差应用光学讲稿各种透镜的形状及他们的主平面位置各种透镜的形状及他们的主平面位置作业:应用光学教材第作业:应用光学教材第48页第页第18题题应用光学讲稿作图法求像作图法求像应用题应用题习题课习题课应用光学讲稿2. 2. 有一放映机,使用一个凹面反光镜进行聚光照明,有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜反射以后成像在投影光源经过反光镜反射以后成像在投影 物平面上。
物平面上光源长为光源长为10mm10mm,投影物高为,投影物高为40mm40mm,要求光源像等于,要求光源像等于投影物高;反光镜离投影物平面距离为投影物高;反光镜离投影物平面距离为600mm600mm,求,求该反光镜的曲率半径等于多少该反光镜的曲率半径等于多少? ? 应用光学讲稿3. 3. 试用作图法求位于凹的反光镜前的物体所成的像试用作图法求位于凹的反光镜前的物体所成的像物体分别位于球心之外,球心和焦点之间,焦点和物体分别位于球心之外,球心和焦点之间,焦点和球面顶点之间三个不同的位置球面顶点之间三个不同的位置 应用光学讲稿6. 6. 已知照相物镜的焦距已知照相物镜的焦距f′=75mmf′=75mm,被摄景物位于距,被摄景物位于距离离x=-∞,-10,-8,-6,-4,-2mx=-∞,-10,-8,-6,-4,-2m处,试求照相底片应分处,试求照相底片应分别放在离物镜的像方焦面多远的地方别放在离物镜的像方焦面多远的地方? ? 应用光学讲稿7. 7. 设一物体对正透镜成像,其垂轴放大率等于设一物体对正透镜成像,其垂轴放大率等于-1-1,,试求物平面与像平面的位置,并用作图法验证试求物平面与像平面的位置,并用作图法验证。
应用光学讲稿8. 8. 已知显微物镜物平面和像平面之间的距离为已知显微物镜物平面和像平面之间的距离为180mm180mm,垂轴放大率等于,垂轴放大率等于-5-5,该物镜组的焦,该物镜组的焦 距和离开物距和离开物平面的距离平面的距离( (不考虑物镜组二主面之间的距离不考虑物镜组二主面之间的距离) ) 应用光学讲稿9. 9. 已知航空照相机物镜的焦距已知航空照相机物镜的焦距f′=500mmf′=500mm,飞机飞行,飞机飞行高度为高度为6000m6000m,相机的幅面为,相机的幅面为300×300mm300×300mm2 2,问每幅,问每幅照片拍摄的地面面积照片拍摄的地面面积 应用光学讲稿10. 10. 由一个正透镜组和一个负透镜组构成的摄远系统,由一个正透镜组和一个负透镜组构成的摄远系统,前组正透镜的焦距前组正透镜的焦距f f1 1′=100′=100,后,后 组负透镜的焦距组负透镜的焦距f f2 2 ′=-50′=-50,要求由第一组透镜到组合系统像方焦点的,要求由第一组透镜到组合系统像方焦点的距离与系统的组合焦距距离与系统的组合焦距 之比为之比为1∶1.51∶1.5,求二透镜,求二透镜组之间的间隔组之间的间隔d d应为多少应为多少? ?组合焦距等于多少组合焦距等于多少? ? 应用光学讲稿11. 11. 如果将上述系统用来对如果将上述系统用来对10m10m远的物平面成像,用远的物平面成像,用移动第二组透镜的方法,使像平面位于移动前组合移动第二组透镜的方法,使像平面位于移动前组合系统的像方焦平面上,问透镜组移动的方向和移动系统的像方焦平面上,问透镜组移动的方向和移动距离。
距离 应用光学讲稿12. 12. 由两个透镜组成的一个倒像系统,设第一组透镜由两个透镜组成的一个倒像系统,设第一组透镜的焦距为的焦距为f f1 1′′,第二组透镜的焦距,第二组透镜的焦距 为为f f2 2′′,物平面,物平面位于第一组透镜的物方焦面上,求该倒像系统的垂位于第一组透镜的物方焦面上,求该倒像系统的垂轴放大率轴放大率 应用光学讲稿13. 13. 由两个同心的反射球面由两个同心的反射球面( (二球面球心重合二球面球心重合) )构成的构成的光学系统,按照光线反射的顺序第一个反射球面是光学系统,按照光线反射的顺序第一个反射球面是凹的,第二个反射球面是凸的,要求系统的像方焦凹的,第二个反射球面是凸的,要求系统的像方焦恰好位于第一个反射球面的顶点,求两个球面的半恰好位于第一个反射球面的顶点,求两个球面的半径径r r1 1,,r r2 2和二者之间的间隔和二者之间的间隔d d之间的关系之间的关系 应用光学讲稿14. 14. 假定显微镜物镜由相隔假定显微镜物镜由相隔20mm20mm的两个薄透镜组构成,的两个薄透镜组构成,物平面和像平面之间的距离为物平面和像平面之间的距离为180mm180mm,放大率,放大率β=-10××,要求近轴光线通过二透镜组时的偏角,要求近轴光线通过二透镜组时的偏角Δu1 1和和Δu2 2相等,求二透镜相等,求二透镜 组的焦距。
组的焦距 应用光学讲稿15. 15. 电影放映机镜头的焦距电影放映机镜头的焦距f′=120mmf′=120mm,影片画面的,影片画面的尺寸为尺寸为22×16mm22×16mm2 2,银幕大小为,银幕大小为6.6 ×4.8m6.6 ×4.8m2 2,问电,问电影机应放在离银幕多远的地方影机应放在离银幕多远的地方? ?如果把放映机移到如果把放映机移到离银幕离银幕50m50m远处,要改用多大焦距的镜头远处,要改用多大焦距的镜头? ? 应用光学讲稿16. 16. 一个投影仪用一个投影仪用5 5××的投影物镜,当像平面与投影屏的投影物镜,当像平面与投影屏不重合而外伸不重合而外伸10mm10mm时,则须移动物镜使其重合,试时,则须移动物镜使其重合,试问物镜此时应向物平面移动还是向像平面移动问物镜此时应向物平面移动还是向像平面移动? ?移移动距离多少动距离多少? ? 应用光学讲稿17. 17. 一照明聚光灯使用直径为一照明聚光灯使用直径为200mm200mm的一个聚光镜,的一个聚光镜,焦距为焦距为f′=400mmf′=400mm,要求照明距离,要求照明距离5m5m远的一个远的一个3m3m直直径的圆,问灯泡应安置在什么位置径的圆,问灯泡应安置在什么位置? ? 应用光学讲稿18. 已知一个同心透镜已知一个同心透镜r1=50mm,厚度,厚度d=10mm,,n=1.5163,求它的主平面和焦点位置。
求它的主平面和焦点位置 Chapter 3 The Eye and visual optical systemsVisual optical system: The instruments working with the human eyes应用光学讲稿The contents of this chapter:•The characteristics of the human eyes •Principles and structures of microscopes and telescopes•How do the optical instruments work with the human eyes?•Defects of the eyes and diopter accommodation of optical instruments 应用光学讲稿§3-1 Structure of the eye •Structure of the eyeSimilar to a camera, the human eyes have three important parts corresponding to the following components ::----Lens --------Film --------Stop The eye can be calleda super camera. It can automatically zoom and focus 应用光学讲稿Cornea: Transparent spherical membrane, the incident rays pass the cornea firstly. Frontal chamber: The room behind the cornea, full of clear ,watery fluid, n=1.3374, converges the ray.Lens: Biconvex lens, the muscle around the lens contracts to make the radius of the former surface of the lens diminish, which leads to the shortening of the eye’s effective focal length. Cornea, frontal chamber and lens can be seen as the part of a lens.应用光学讲稿Retina: Optic nerve cell and optic nerve fiber, as a sensitive film.Yellow spot: The most sensitive area on retina. Retina and yellow spot can be seen as the photo-sensitive portion.Iris: The membrane suspended between the cornea and lens. In the center of the iris is the pupil which regulates the amount of light entering the eye, as an iris diaphragm. 应用光学讲稿 Blind spot: Located where the nerve fibers leave the eyeball, no sensitive cell, no vision can be formed.Test of the blind spot 应用光学讲稿The visionThe outside rays enter human eye forms an image on the retina, and the impulse signals are generated by optic nerve cells be transmitted to brain through the optical nerve. Finally the optical vision is formed after processed by the advanced nerves.The process of physics, physiology and psychology.Experiment of inverted image应用光学讲稿Optical axis: The link of the macular fovea and the image nodal point of the eye.The optical characteristics of the human eyesViewing field of human eye:The field of vision of an eye can extend to 150 degree.If head keep still, we can only get a clear image near 6º--8º around the center of optical axis. In order to see widely, the eyeball can rotate automatically, the head moves as well.应用光学讲稿The accommodations of the eye: Diopter accommodation and pupil accommodation. 1. Diopter accommodation As the position of the object changes, the eye will automatically adjust its focal length to make the image fall still on the retina. This process is called the diopter accommodation.F’应用光学讲稿•Express the accommodation: SDThe reciprocal of the distance, which is from the object plane (conjugate of retina) to the eye1lSD=•Normal Reading Distance, Near Point and Far PointNormal reading distance: 250mm in front of the eye,,SD=(1 / (-0.25))= -4The unit of l is meterNear point: The shortest distance which the eye can see clearly by accommodation.Far point: The longest distance which the eye can see clearly.Maximum range of accommodation = SD of near point – SD of far point应用光学讲稿AgeMaximum accommodation range/diopter Least distinct distance (mm) 101520253035404550-14-12-10-7.8-7.0-5.5-4.5-3.5-2.57083100130140180220290400The different accommodation ranges of the people of different ages 应用光学讲稿2. Pupil accommodation•The iris is capable of expanding or contracting to control the amount of light admitted to the eye.•Under very bright conditions, daytime D=2mm; At night, D=8mm•When we design an optical system, the exit pupil of the optical instrument must match with the pupil of the human eye. When it is used on the daytime, the exit pupil can be smaller; and when used at night, it must be bigger.The brightness of the outside object will change with objects, weather and times.应用光学讲稿•Visual Acuity of the EyeSuppose two point objects are imaged on the retina. If the distance between the two point images is long enough, they can be recognized by naked eye, however if the distance is too short, they may not be recognized by the human eye.Visual acuity of two point objects::Why??应用光学讲稿The Structure of retinaRetina is composed of the optical nerve cells, which consist of cone cells and rod cellsCone cells: Work under very bright conditions Rod cells: Work in very dim lightIf the distance between two point images are not less than two times the diameter of the nerve cells, or if the two point images locate on two cells who are not adjacent to each other, the two point images can be recognized.应用光学讲稿The diameter of a nerve cell is about 0.001-0.003mm, so we can take 0.006mm as the standard of the eye.We use the corresponding angular ω in the object space to express visual acuity, which is called the angular resolution of the eye.Or the minimum angular subtended by two objects which can be just recognized by the eye, is called the angular resolution of the eyeWhen y’min=-0.006mm,,f=-16.68mmWe get应用光学讲稿The visual acuity of the line: The visual acuity of the eye can be improved up to 10”In many actual optical instruments such mode of alignment is always adopted to improve the measure precision.The visual acuity of the line is called aiming precision , as shown in the right picture, it can reach to 10”.应用光学讲稿The conditions being able to see clearlyNecessary condition: Imaging on the retinaSufficient condition: To two objects, viewing angle should be greater than 60”To two lines, viewing angle should be greater than 10”Exercise: P64, 1-2应用光学讲稿§3-2 Principles of Magnifier and Microscope Only when an object images on the retina, and the angle subtended by the object to the eye is greater than the angular resolution of the eye, then it can be seen clearly. 1. Imaging at infinityThe common requirements for different visual optical systemsThe infinite object will just image on the retina when the eye is in normal, relaxed situation.应用光学讲稿2. Enlarging the viewing angle Observing directly:Observing through an optical instrument:-y’e=π ’ tg ωe-y’i=π ’ tg ωi应用光学讲稿The ratio of the image heights when observing through optical instrument and observing directly by the eye denotes the magnifying power of the instrument , expressed with a symbol Г.Г ==y'iy’e=π'tg ωiπ'tg ωe tg ωi tg ωe=The bigger Г is, the higher the magnifying power is. Г can be positive or negative. Г : positive, erect image; Г : negative, inverted image应用光学讲稿•Principles of magnifier y-l--y’ ω The angle subtended by two objects to the eye Minimal visual angle needed应用光学讲稿Minimal visual angleWays to enlarge the visual angle: enlarge y: impossible. reduce the object distance L: but can not reduce it boundlessly, since it may not image on the retina. As expecting the object at infinity, so we can put a lens between the eyes and the object, with the object located at its first focal point. The lens forms an image at infinity; the eye then re-images the object at its retina. 应用光学讲稿F-f=f ’--y’ ωi Г = tg ωi tg ωe= 250 f’ tg ωe= y f’= tg ωi y -l= y 250Notice: the normal reading distance is 250mm, the object can be moved at the normal reading distance.应用光学讲稿The magnifying power of the magnifierIf we expect Γ>1, the requirement is f'<250 In order to get a higher magnifying power, we must reduce the focal length of the magnifier, however, the focal length of a single lens can not be much small.Why??应用光学讲稿Example :Γ=15, then the focal length of the magnifier isIf the second surface is plane, r2=∞, then r1=8.5mmFormula of the focal lengthAssume the lens be a symmetrical biconvex lens, r1=-r2, take n=1.5We can get r1=-r2=17mm The radius is so small that it is very difficult to produce, and the entrance diameter is also too small.应用光学讲稿•Principle of microscopeA microscope can be regarded as a complex magnifier.In order to get a higher magnifying power of magnifier: Reduce the focal length: it can not be reduced too small. Increase the object height.The viewing angle of magnifier First, we can use a lens to form an enlarged image, then magnified by a magnifier, thus a “two times magnifying” image can be obtained. This is the principle of a microscope.应用光学讲稿•Principle of microscopeF’oFe-y y’ ωiObjective f’o-feΔ A microscope consists of two lenses, the first lens facing to the object is called the objective, the second lens near the eyes is called the eyepiece.Eyepiece 应用光学讲稿F’oFe-y y’ ωi f’o-feΔ tg ωe= 250y= y’ f’e tg ωiβ0 = y’ y -Δ f’o== -Δ f’o f’eyГ = tg ωi tg ωe= -250Δ f’o f’eObjective Eyepiece 应用光学讲稿F’oFe-y y’ ωi f’o-feΔ Г == -Δ f’o. 250 f’e==βo .ГeQuestion: Is the lateral magnification of the objective positive or negative?Objective Eyepiece 应用光学讲稿 The lateral magnification of the objective and the magnifying power of the eyepiece are engraved on the drawtube, we can easily get the magnifying power of the microscope by multiplying these two values.The magnifying power of a microscope Normally, objectives and eyepieces can interchange, using different lens groups can obtain different magnifying powers. In order to interchange easily, the distance between the object and the image of the objective must be equal to 195mm exactly. So a microscope can be regarded as a complex magnifier.Exercise: P64, 4-5, 8, 11应用光学讲稿 Example 1: If the magnifying power of a microscope is 58, using the method of alignment of two strait lines. Find out the aiming error? If the magnifying power of the eyepiece is 10, determine the lateral magnification of the objective and the effective focal length of the eyepiece?Solution:Aiming error:应用光学讲稿The lateral magnification of the objective:The focal length of the eyepiece:应用光学讲稿 Example 2: The aiming error of a microscope is 0.001mm, using the method of alignment of cover lines, the visual acuity of eye is 60’’, what is the magnifying power?应用光学讲稿 Example 3: The aiming error of the eyepiece of a focometer is 0.001mm,,the visual acuity is10”, determine the effective focal length of the eyepiece?Solution: 应用光学讲稿§3-3 Principle of TelescopeThe primary function of a telescope is to observe the infinite or distant objects.For a single magnifier, the object should be located on the first focal plane. So a lens can be added in front of the magnifier, imaging the infinite object on its second focal plane. The second focal plane of the lens must coincide with the first focal plane of the magnifier.应用光学讲稿The lens in front of the magnifier is called the objective, and the magnifier is called the eyepiece.The second focal point of the objective coincides with the first focal point of the eyepiece.In the combined system , Δ=0.Sometime, we can define that Δ= 0: telescopeΔ≠0: microscope应用光学讲稿F’oFe f’o -fe y’ ω’ -ω The magnifying power of a telescopeFormula of the magnifying power: The angle subtended by the image to eye through the telescope, viz. the field angle of view in image space.: The angle subtended by the object to the eye when viewing by naked eye, viz. the field angle of view in object space应用光学讲稿The magnifying power of telescopeWe haveThe magnifying power of the telescope应用光学讲稿The magnifying power of telescopeTo enlarge the visual angle, it require that , viz. The higher the magnifying power, the longer the focal length of the objective is, and the longer the total length of the instrument will be.Γ can be positive or negative: Γ >0, the signs of ω and ω’ are same, forming erect image Γ<0 , the signs of ω and ω’ are reversed, forming inverted imageΓ can be positive or negative, depending on the signs of the focal lengths of the objective and eyepiece.应用光学讲稿The types of telescopes:Keplerian telescope: Both of objective and eyepiece are positive lenses.Г<0, it forms an inverted image, and needs to add an relay erecting lens, volume is bigger.There is a real image in this kind of telescopes, so we can add a reticule on the focal plane for aiming and measuring. Military optical instruments应用光学讲稿The types of telescopes:Galilean telescope: positive objective, negative eyepieceГ>0, forms an erect image, it does not need to add an erecting lens.volume is smaller.Since there is no real image in the Galilean telescope, we can not put a reticule inside the system. It can’t be used for aiming and measuring.it’s usually used for watching.应用光学讲稿 Question: Can the objective and eyepiece of a Galilean telescope change with each other? Can the objective and eyepiece of a Keplerian telescope change with each other?Where is the reticule of a Keplerian telescope located in? Can a telescope be made up by the objective and eyepiece both with negative focal lengths?应用光学讲稿The magnifying power of a telescopeThe angular magnification of a telescope is independent of the positions of the conjugate planes, numerically equals to its magnifying power.The incident ray and the emergent rays are parallel.应用光学讲稿The magnifying power of a telescopeThe lateral magnification is independent of the positions of the conjugate planes, numerically equals to the reciprocal of its magnifying power. Method of measuring the magnifying power: DynameterExercise: P64-65, 3, 6, 7应用光学讲稿Example: The method of alignment of a geodetic telescope adopts two strait lines. The aiming error is less than 2mm when the object distance is 1km. Determine the magnifying power of the telescope.应用光学讲稿§3-4 Defect of Eyes and Diopter Accommodation of Optical Instruments Focal point F’, the near point and the far point of normal eyes1. Defect of EyeslPassing through a relaxed normal eye, the infinite object will image at the retina, viz. the focal point F’ falls on the retina. F’应用光学讲稿l when the normal eyes observe closer object, F’ can be moved forward by visual accommodation, then the eye re-image it again on the retina.lThe longest distance the eye can see clearly is called the far point distance. When the eyes are in the relaxed, the far point coincides with the conjugate object plane of the image on the retina, l The nearest distance the eye can see clearly by accommodation is called the near point distance.应用光学讲稿F’B. The characteristic of nearsightedness•Since the second focal point of a nearsighted eye falls ahead of the retina, the image of an infinite object cannot be focused clearly on the retina.•The nearsighted eye can not see the infinite object clearly, it can only see objects within certain distance (the far point distance ). The far point is where the object conjugate plane of the retina of a nearsighted eye locates. It can only see the objects within the far point distance by accommodation.应用光学讲稿•The myopic degree is often expressed by the diopter of the far point distance of the nearsighted eye.For example, a person whose far point distance is 0.5m, the corresponding diopter of myopia is SD=1/(-0.5)= -2Iatrical degree corresponds to diopter, quantitatively 1 diopter ==100゜゜Thus, the myopic degree of the person is --200゜゜应用光学讲稿C. The correction of the nearsighted eyeF’Far point Negative lens is used, the focal length of the negative lens = the far point distance of the eyeFor example, a person whose far point distance is 200mm, how much is the degree of the glasses he needed? And how much is the effective focal length of the glasses?应用光学讲稿D. The characteristic of the farsighted eye•The second focal point of the farsighted eye falls behind the retina. A farsighted person can possibly see the infinite object by accommodation.F’•The far point of the farsighted eye locates behind the eye. The near point distance will be increased.应用光学讲稿F’应用光学讲稿E. The correction of farsighted eyeF’Far point Hyperopia can be corrected by the use of a positive lens. the focal length of the positive lens = the far point distance of the eye应用光学讲稿Example: A person can not see the object clearly which is farther than 1m, how much is the degree of the glasses he needed? The other person can not see the object clearly which is nearer than 1m, how much is the degree of the glasses he needed?The first person The second person: The near point distance is 1m, the object located in 1m needs to be imaged at the distance of 250mm. 应用光学讲稿2. Diopter Accommodation of Optical Instrumentsobjective Normal eyeeyepiece F’F’MyopiaF’oFeFeF’hyperopiaFe应用光学讲稿Calculation of AccommodationAccording to x x’ =f f’Notice::When SD is “--”, x is “++”, the eyepiece will move towards the objective ; When SD is “++”, x is “--”, the eyepiece will move away from the objective .应用光学讲稿Calculation of AccommodationIn practical applications, the graduation of the diopter is engraved on the eyesight frame. By turning the eyepiece the diopter can be accommodated.In practical optical systems, reticule is on the image focal plane. In order to avoid eyepiece and reticule touching mutually while diopter accommodating, the distance between the reticule and the first surface of the eyepiece should be long enough.Exercise::P65, 9-10应用光学讲稿§3-5 Spatial Depth of Focus and Stereoscopic effect 1.The spatial depth perception feeling of a single eyeTo judge distances by a single eye:A.When the height of the object is known, the distance can be judged by comparing its viewing angle; B.by observing their defilading relationships and the sun’s shade; C.by the details and the transparence of the air;D.By the accommodation degree of the eye.应用光学讲稿B2. The spatial depth perception feeling of the two eyesA. The contractive degree of the muscles by turning optical axis while focusing on the object.Optical axis: The link of the macular fovea and the image nodal point of the eyeAα1α2应用光学讲稿B. Stereoscopic vision – stereoscopic effectlStereoscopic effect (parallax angle )αBBAαAb1b2a2a1A, B are at the same distance from the eyes, then:αA= αB b1、、b2 locate at the same sides of a1、、a2;; a1b1=a2b2应用光学讲稿The distances of A and B is not equal, two situations:b1、、b2 locate at the different sides of a1、、a2 b1、、b2 located at the same sides of a1、、a2 a1b1≠ a2b2αAABαBa1b2a2b1αBBAαAb1b2a2a1αAαB=应用光学讲稿lStereoscopic acutance, Radius of stereoscopic vision, Stereoscopic vision errorØThe difference of parallax angle Δα indicates the location difference of objectswhen Δα≤10″, the eye cannot differentiate A from B, the minimum value of Δα is called stereoscopic acutance.ØThe maximum distance which the eye can differentiate is called the radius of stereoscopic vision.应用光学讲稿ØWithin the stereoscopic vision range that the location difference of objects can be differentiated, the error in judging whether the two objects are in the same spacial depth or not is called the stereoscopic vision error应用光学讲稿§3-6 Binocular Instruments 1. Stereoscopic magnifying power When observes directly with a naked eye, the parallax angle of a given object is αe When observes with an instrument the corresponding parallax angle is αi. Then stereoscopic magnifying power can be expressed:Пαiαe=应用光学讲稿Observing directly by naked eyeParallax angle in object spaceThe parallax after using the instrumentαe== l bα== l Bαi== α’== l BГП==Thusαiαe== b BГb=62mm应用光学讲稿2. Stereoscopic vision error 3. Requirements for the binocular instruments A. The axises of the two systems must be parallel;B. The magnifying powers of the two systems must be equal; C. The two systems must not have tilt images. Chapter 5 Selection of Imaging Rays in Optical Systems应用光学讲稿IntroductionHH’FF’应用光学讲稿Question: What does the diameter of a lens relate to?1.The diameter of the imaging rays D2.The position of the imaging raysD1D2应用光学讲稿Contents in this chapter:l The methods of selecting the position of imaging raysl The principles of selecting the imaging raysl The methods of limiting the imaging rays应用光学讲稿5.1 Stop and Its Application1. The structure of a camera In optical systems, the apertures which limit both the diameter of the rays and the field of view are called stops.Lens::acts as the imaging component Film ::sensitive partStop::limits the imaging rays, variable stop 应用光学讲稿2. Stops1) Aperture Stop This kind of stop can limit the diameter of rays which will enter the optical system 2) Field Stop A kind of stop which can limit the field of view Example: the film frame 3)False Light Stop A kind of stop which can obstruct the false light应用光学讲稿3. VignettingThe width or diameter of the oblique beam is smaller than that of the axial beam. This will cause a reduction in the illumination at the edge of the image plane. This effect is called vignetting.Linear vignetting coefficient: Area vignetting coefficient: 应用光学讲稿 Purpose of setting Vignetting 1.To reduce the sizes of some optical elements. 2.To obstruct some rays which have larger aberrations. In some kinds of telescopes,,the vignetting coefficient may achieve 0.5 . Aperture Stop:: A kind of stop which can select the imaging rays of the axial and the center of the field (no vignetting).In camera systems: Aperture stop---Variable stop Field stop--- The film frame应用光学讲稿5.2 Selecting imaging rays in telescopes 1. Binocular telescope System data:Magnifying power :ГГ=6=6Field angle of view :ωω=8°30’=8°30’Exit rays diameter :D´=5mmD´=5mmExit pupil distance : l´l´z≥z≥11mm11mmEffective focal length of the objective :f´f´0 0=108mm=108mmEffective focal length of the eyepiece f´f´e e=18mm=18mm应用光学讲稿1) In the case of axial raysF’O30 The prisms is unfolded and substituted by the equivalent air thickness as follows:应用光学讲稿The diameter of the objective is the largest and that of the eyepiece is smaller in the case of axial rays.F’O30To satisfy the requirements of the system characteristics, the clear apertures of each components must be larger than the diameters of the axial rays. 应用光学讲稿2) In case of off-axial raysF’Oaabba-a 30 increase increaseb-b 60 increase largestobjective prism eyepiece应用光学讲稿So we choose a-a rays as the diameter of objective.In this case,,the objective’s frame determines the diameter of rays which pass through this system. So the frame of the objective is the aperture stop of the system. The reticule that locates at the image plane limits the field of view of the system, therefore, it is the filed aperture. The diameter of the reticule can be calculated as the twice of the image height , so we can get:应用光学讲稿3) Several conceptsExit pupil : The image of the aperture stop in image space .Entrance pupil : the image of the aperture stop in object space Exit pupil distance : The distance between the exit pupil and the vertex of the last surface Entrance pupil distance : The distance between the entrance pupil and the vertex of the first surface 应用光学讲稿 Exit pupil is the place where the luminous energy concentrate together. In order to see all fields of view, it is necessary to put the eye’s pupil at the exit pupil. The exit pupil distance must be greater than some value, the minimum exit pupil distance is about 6mm. For military optical instruments, it may be greater than 20mm. The diameter of exit pupil has a direct relationship with the luminance of the image. Question: Is it good that the diameter of the exit pupil and the exit pupil distance increase sharply? 应用光学讲稿2. Panoramic Finder1) System dataMagnifying power ГГ=3.7=3.7Field angle of view 2 2ωω=10°=10°Exit pupil diameter D’=4mmD’=4mmExit pupil distance l´l´z≥z≥20mm20mmEffective focal length of the objective f´f´0 0=80mm=80mmEffective focal length of the eyepiece f´f´e e=21.6mm=21.6mm应用光学讲稿2) System diagram3) Axial raysDiameter of the entrance pupil D=D´ ×Γ=4×3.7=14.8mmIt’s position is symmetrical with the axis.In order to satisfy the requirements of system, the apertures of each of elements must be lager than the diameters of axial rays.应用光学讲稿4) Selection of the off-axial imaging rays Rules of determining the position of the entrance pupil or the aperture stop: The aperture stop should be chosen at the component whose aperture is the largest in the case of the axial rays. In this system, the components whose diameters of axial rays the largest are protective glass, Right-angle Prism, Dove prism ,objective. Thus, the Dove prism is chosen to be the aperture stop. Because its volume is the largest and nearly in the middle of the four elements.应用光学讲稿F’oaal’zo’DEntrance PupilAperture StopField Stopl Position of the exit pupil The position of the emergent rays can also determine the position of the exit pupil In the condition of the Binocular telescope there are no vignettings in all fields of view, and the oblique and axial rays have the same diameter. The objective is the aperture stop and is perpendicular to the axis, and it can be regarded as a thin lens. Because it has a definite position, the position of its image (exit pupil) in image space is also definite. 应用光学讲稿In the case of oblique rays passing through Panoramic finderO´OL´z The Dove prism is chosen to be the aperture stop, however, the Dove prism has a certain length along the axis, and its conjugate image in image space will also take up a certain range, so the exit pupil distance can not be measured. We can also measure the position of the emergent rays by determining the position of the exit pupil应用光学讲稿 The intersection point of the incident chief ray and the axis is the position of the entrance pupil. Thus, the entrance pupil, exit pupil and the position of the aperture stop can be determined according to the chief ray. The central ray of the oblique rays, is called the chief ray In the panoramic finder, the oblique rays are cut by the Dove prism. The width of the oblique rays is smaller than that of the axial rays, which means there are vignettings in all fields of view.In the case of oblique rays passing through Panoramic finder应用光学讲稿The center O is called the nominal aperture stop .O´OL´z In fact, the rays are limited by the front and back end of the Dove prism, which is equivalent to set the aperture stop at its center O.In the case of oblique rays passing through Panoramic finder应用光学讲稿Question: 1) In the Binocular telescope, the exit pupil is defined as the image of the aperture stop in the image space. 2)In the Panoramic finder, the exit pupil is defined as the intersection point of the emergent chief ray and the axis. Is there any contradiction in these two definitions? In the case of no vignettings, the chief ray passes through the center of aperture stop precisely, then the emergent chief ray passes through the image of the center of aperture stop. This image is also the intersection point of the emergent chief ray and the axis. So the two definitions do not contradict each other.F’Oaao’Entrance PupilAperture StopField Stop应用光学讲稿Question: When the field angle of view of oblique rays changes, will the positions of the exit and entrance pupil change along with it? o In the case of Dove Prism,,there are vignettings in all fields of view, and the positions of exit and entrance pupil will not change along with the change of the field angle of view. 应用光学讲稿 In some cases,,not all fields have vignettings, but the vignetting only exists when the field angle of view exceeds a certain rangeExample::Telescope-ω0-ωExit Pupil eye-point Lz´ The exit pupil is always determined according to the central part without vignetting. eye-point: Intersection point of the axis and the chief ray of the marginal emergent rays . eye-point distance: The distance between the eye-point and the vertex of the last surface of the system The distance between the eye-point and exit pupil should be not too long. Why? 应用光学讲稿3. Summary•Why do we have to select imaging rays? The position of the imaging rays will determine the diameters of each of the elements in the optical systems. The selection of the imaging rays means actually the selection of the oblique rays, because the axial rays cannot be selected. Our goal of selecting the imaging rays is to make the sizes of the optical elements as small as possible, and the sizes of each element are as even as possible. In order to get a well proportioned outline shape, we always make the chief ray of the oblique rays pass through the center of the stop or the component whose diameter is the largest for the axial rays. 应用光学讲稿•Determining the position of exit pupil In a system without vignetting : Binocular telescope .The image of aperture stop in image space is the exit pupil. All of the field of view have vignetting : Panoramic finder . the intersection point of the chief ray and the axis is the exit pupil. In some systems, the eye’s pupil acts as the aperture stop and the exit pupil. In systems which only have vignetting on the marginal field of view, we can determine the positions of the entrance pupil, exit pupil and the aperture stop by considering the central parts of the fields of view without vignetting. 应用光学讲稿•Field Stop The Field Stop must coincide with or near the real image plane of the system. In some systems such as the Galilean telescope, there is no a real image. In these systems the field stop can not be setup. There is a transition area in all fields, changing from bright to dim, without a clear borderline. 应用光学讲稿5.3 Selection of Image Rays in Microscope and Telecentric System1. Selection of image rays in general microscopesPrinciple of a microscope:应用光学讲稿1) The field of view in a microscope is expressed with the maximum size of the object, namely liner field of view. The liner field of view is limited by the frame on the image plane. The frame limits the image field of view of the system, so it acts as the field stop of the system. The microscope’s objectives are exchangeable, generally the diameter of field stop is 2y´=20mm,y = y´/ β, ifβ=40× , we can get, ymax=20/40=0.5mm应用光学讲稿2. The aperture of the imaging rays is expressed with the maximum slope angles of the axis and the marginal rays. U: object aperture angle U’: image aperture angle. Turning from the axis to raysGiven D’ and Magnifying power Γ, can we get the aperture of incident rays?应用光学讲稿According to, The product of the slope aperture angle and the refractive index nu in object space is called the numerical aperture and is expressed by NA.For microscope, n’=1应用光学讲稿To ensure the diameter of emergent rays , we can get D’≥1mmthus, NA≥Γ/500 Methods of increasing NA: NA=nu 1. To enlarge u; 2. To Increase n. We can immerse the objective into liquid with high index, such as oil .NA is always wanted to be larger. 1.NA= D’ Γ/500. Suppose D’ is constant,,if we want to increase Γ, we need to enhance NA. Suppose Γis constant , if we want to increase D’, we also need to enhance NA.2.NA is related with the resolution of a microscope. The larger the NA is, the higher the resolution is.应用光学讲稿For example, if a microscope adopts an eyepiece with the magnifying power of 15x, and an objective with the lateral magnification of 3x, then the magnifying power of the microscope will be: Generally the NA of a 3x objective lens is 0.1, and the eyepieces with NA =5X,6X,10X,15X, can all match with the objective with NA=0.1.应用光学讲稿2. Selection of rays in the measuring microscope 1) The microscope which can measure the height of objects:2y2y´ As the distance between the objective and the reticule is fixed, the corresponding β is then a constant . we can get the height y of object by measuring the height of image y’. y=y´/β The object plane must be positioned precisely in order to make the image plane fall just on the reticule, or else, there will be some errors.应用光学讲稿A1B1ABB´A ´B1´A1´y1´y´ If the object plane is not positioned precisely ,The cause of errors: What we measure now is the distance between the centers of the two blur spots, and the centers is the intersections of the chief ray and image plane. As the aperture stop is still on the frame of the objective, the chief rays will change along with the movement of object plane, then the intersections will also change.Way of solving this problem: Making the position of chief rays fixed应用光学讲稿Aperture stop y1´=y´ The incident chief rays are always parallel to the axis, and the emerge chief rays will not change, and the intersection of it on the image plane will also not change.Object telecentric system : Put the aperture stop on the second focal plane, and the entrance pupil is located at infinity. 应用光学讲稿2) The microscope used in geodetic instrumentF´Oy´y-f´O-l We need measure the distance l, given the focal length of objective f’ and the height of object y, after measuring the height of image y’, we can get the object distance l If the aperture stop is on the frame of the objective and if there is a slight defocusing, the errors will be introduced.应用光学讲稿ABA´ ´B´ ´ y´y1´When the image plane does not fall on the reticule: 应用光学讲稿 The chief ray of the emergent rays will be always parallel to the axis, and the intersection of it on the image plane will also not change. The telecentric system shouldn’t be use in any case.Image telecentric system: The aperture stop is located at the first focal plane of the objective, and the exit pupil is located at infinity.应用光学讲稿5.4 Properties and Applications of Field Lens1. Functions of field lensobjectiveeyepieceFe应用光学讲稿F´Ofield lensFunction of field lens: The field lens can change the positions of the imaging rays without altering the imaging characteristic of the system.objectiveeyepiece应用光学讲稿2. Applications:O1O2-LL´objectivefield lenseyepiece应用光学讲稿3. Calculation of the effective focal length of the field lensO1O2-ll´ In above system, suppose the distance between the first lens and its image plane is 150mm, the distance between the second lens and the internal image plane is 100mm, then we have. objectivefield lenseyepiece应用光学讲稿F´物物Field lenseyepieceQuestion: Whether all of the field lens are positive lens?objective应用光学讲稿5.5 Depth of Field1. Definition of depth of field The distance between the farthest and the nearest object planes which can still be formed clearly on the image plane is called the depth of field .应用光学讲稿2. Formula Derivation应用光学讲稿 Using the Gauss formula, we have subtract these two equations we getorSubstitute it into , we get应用光学讲稿Considering Similarly, With these equations and Z′, D and L, we can get the range of the field depth=can be worked out as应用光学讲稿3. Properties1) The depth of field will increase if the diameter of the blur spot is allowed larger.2) For the photographic objectives, the expression of the relative aperture and depth field is From the above expression, we know the depth of field is in inverse ratio with the relative aperture and the focal length.应用光学讲稿Substitute into ,we getthe nearest object distance is expressed by ,and 3) If the farthest object is at infinity, find out the nearest distance and the whole depth of the field.The distance from infinity to is the whole depth of field.Substitute into and express withWe get应用光学讲稿Example: Suppose the effective focal length of a camera objective is f’=50mm, the relative aperture of the objective is 1:5, the allowable Z’<<0.05mm, if the required object is at 2m distance, find out the position of the farthest and the nearest image plane? The depth field is应用光学讲稿calculateChapter 6 Basics of Radiometry and Photometry 应用光学讲稿•The optical system is the transmission system of radiant energy•The energy transfer ability has influence on brightness of the image •Radiometry: The study of testing, measuring and calculating the electromagnetic wave •Photometry: The study of testing, measuring and calculating the visible light 应用光学讲稿6.1 Solid Angle and its Applications in Photometry1.Solid Angle and Its Unit the plane angle :1 radian BAO应用光学讲稿 the space angle: solid angle sΩoThe space contained in a closed conical surface of any shape is called the solid angle Ω== Take a radius of r to draw a sphere, if the conicoid cuts an area of on the sphere , the solid angle is a sterad (sr) .The whole area of the sphere is . ThereforeΩ== ==4 π应用光学讲稿2.The Calculation of The Solid Angle Assume that the slope angle of a cone is α, let us determine the solid angle of the cone: Draw a sphere with a radius of r, assume to take a girdle corresponding with . Then the breadth of the girdle is ,,the radius of the girdle is ,,so the length of the girdle is ,,and the total area of the girdle is应用光学讲稿6.2 Basic Ideas in Radiometry and Their Measurement Units 1.Radiant Flux The total energy a radiator radiates in a unit time---- radiant flux ,and the unit is watt.:optical spectrum intensity curve 应用光学讲稿2. Radiant Intensity We make a solid angle of in a given direction, the radiant flux in the scope of is , the ratio of and is called radiant intensity in the given direction and is denoted by . The measurement unit of the radiant intensity is watt per sterad (W/sr). It shows the characteristics of a radiator that radiates energy in different directions. 应用光学讲稿3. Radiant Exitance and Irradiance Take a tiny area of around point A, we assume that the radiant flux emitted from the tiny area is , then the radiant exitance of point A is AdsThe measurement unit is watt per square meters It shows the radiant characteristics of different positions on the surface of the radiator, regardless of the radiation direction or the value of the solid angle.应用光学讲稿4. Irradiance It is the opposite of radiation exitance . It is not the radiant flux emitted from the dS, and it shows the radiant flux a certain surface receives. Irradiance is denoted by .AdsThe measurement of irradiance is the same as that of the radiant exitance, i.e., watt per square meters .应用光学讲稿5. Radiance The radiance is equal to the ratio of radiant intensity that is in the given direction on a tiny area around a certain point on the surface of sphere, and the projection area of the tiny area perpendicular to the given direction. It is denoted by the symbol .The radiance represents the radiant characteristics of a radiator on different positions and directions. The measurement unit is watt per sterad square meters 应用光学讲稿6.3 Relative Sensitivity of the Eye to Different Wavelengths• •With the range of the visible light, the eyes have different visual sensitivity on different wavelengths. •In the study of photometry, in order to reflect the difference in sensitivity of the eyes at radiation of different wavelengths, we define a function V(λ), called as luminous efficacy of radiant flux (spectral sensitivity characteristic).应用光学讲稿ColorwavelengthVλColorwavelengthVλpurplepurpleindigoindigoindigobluebluebluebluebluegreengreengreengreenyellowyellowyellowyellowyellow4004104204304404504604704804905005105205305405505555605700.00040.00120.00400.01160.02300.03800.06000.09100.13900.20800.32300.50300.71000.86200.95400.99501.00000.99500.9520yellowyelloworangeorangeorangeorangeorangeorangeredredredredredredredredredredred5805906006106206306406506606706806907007107207307407507600.87000.75700.63100.50300.38100.26500.17500.10700.06100.03200.01700.00820.00410.00210.001050.000520.000250.000120.00006应用光学讲稿 Eyes are most sensitive to wavelength λ=555nm. We define the luminous efficacy of radiant flux as 1, i.e., V(555)=1. Assume that eyes are simultaneously observing two radiators, A and B, which stay at the same distance to the eyes, and the two radiators have the same radiant intensity at the observing direction. The wavelength of the electromagnetic wave of A is λ, while the wavelength of B is 555nm. Then, the ratio of visual intensities at A and B is the luminous efficacy of radiant flux V(λ) with λ. 应用光学讲稿 For example, when the eyes are watching at radiators A and B with the same distance, if the radiant intensities of A and B are equal at the direction of the observation, and the radiation wavelength of A is 600nm and B, 500nm.V(600)=0.631 V(500)=0.323The visual intensity of radiator A on the eyes will be 0.631/0.323 times of that of radiator B, or nearly twice as strong. On the other hand, if we want to obtain the same visual intensity from radiators A and B, the radiant intensity of radiator A can be half of that of radiator B. 应用光学讲稿6.4 Basic Ideas in Photometry1.Luminous Intensity and Luminous Flux (1)Luminous FluxLuminous flux is the most basic quantity in photometry and corresponds to the radiant flux in radiometry. Assume a radiator emits the homogeneous light ,its radiant flux is denoted by , is the radiant flux measured by the visual intensity of eyes, we called it as luminous flux. C: constant 应用光学讲稿(2) Luminous Intensity Luminous intensity corresponds to the radiant intensity in radiometry. It represents the ratio of the luminous flux received by the eyes and the solid angle of the pupil of the eyes subtend at the radiator. Luminous intensity shows irradiant intensity of an illuminant in a certain direction. The unit of luminous intensity is candela (cd). 应用光学讲稿C: according to CIE: If an illuminant emits monochromatic radiation with wavelength of 555nm, and the radiant intensity in this direction is (1/683)W/sr, the luminous intensity of the illuminant is 1cd (candela). Substitute constant C back into Eq of luminous intensity :ifWe get lumen (lm) 应用光学讲稿(3) Spectrum Luminous Efficacy We use symbol to represent ,it is called spectrum luminous efficacy of wavelength .whenwe getIt is the maximum value, and is called the maximum spectrum luminous efficacy. reflects the difference in sensitivity of the eyes at radiation of different wavelengths .应用光学讲稿(4) Substitute into Eq. luminous flux, we getIf we want to konw the total luminous flux, we need to get the integral within the whole wavelength range: The luminous characteristics of illuminants: luminous efficacy 应用光学讲稿luminous efficacy of some commonly used light sources Light source Luminous efficacy Light source luminous efficacy tungsten lamp (in vacuum) tungsten lamp(in gas)quartz halid tungsten lamp Gas discharge tube 8~9.29.2~213016~30fluorescent lamphigh voltage mercurous lampsuper voltage mercurous lamp sodium lamp 27~4134~4540~47.560应用光学讲稿Example: There is a tungsten lamp with a power (radiant flux) of 60W. Assume it shines evenly in all directions, try to calculate its luminous intensity. 1. Calculate the total luminous flux: 2. Calculate the luminous intensity: the total solid angle is 应用光学讲稿2. Luminous exitance and illuminance (1)Luminous exitance: Luminous flux emitting from unit area of the luminous surface When the luminous flux is even on luminous surface, the formula is:Ads(lm/m2)应用光学讲稿(2) Illuminance: when a certain surface is lighted by an illuminant, illuminance is defined as the ratio of the luminous flux that a tiny area receives around a certain point on the lighted surface to the area.When the surface is lighted evenly, the formula is:((lx))The unit is lux(lx). Ads应用光学讲稿 Some commonly used illuminance valuesFigures shown by instrumentOrdinary read and writePrecising work (mending watch)Shooting movies in studioManuscript to be shootenIn sunny room Ground lighted directly by the sunGround under the moon lightGround in the night without moon light 30~50 lx50~70100~2001000030000~40000100~5001000000.23×10–4应用光学讲稿Example: A circle screen with an illuminating diameter of 2.5m is lighted, the image distance is 15m, the illuminace sould reach 50 lx, the effective focal length of the condensing lens is 150mm and the diameter of the lens is also 150mm. Calculate :1.the luminous intensity of the lamp 2. the average luminous intensity after passing through the condensing lens. Also determine the power and location of the lamp.应用光学讲稿Consider: image irradiance total luminous flux received in the lighting scope image solid angle image aperture angle object solid angle luminous intensity in the lighting scope the luminous intensity of the lamp total luminous flux the power of the lamp and the location of the lamp 应用光学讲稿The total luminous flux received in the lighting scope: Illumination solpe angle:Based on the formula for ray tracing in ideal optical systems: We have:The corresponding solid angle: 应用光学讲稿The luminous intensity of the lamp is: The average luminous intensity in the lighting scope is:The total luminous flux of the lamp is: The power of the lamp is: The location of the lamp is:应用光学讲稿3. Luminance Luminance shows luminous flux emitted from unit projection area on the lighting surface within unit solid angle.The unit of luminance is candela/square meters .It represents the lighting characteristics of point A on the lighting surface and in the lighting direction AO. 应用光学讲稿luminance of some ordinary objects Light source luminance Light source luminanceThe sun seen from the earth Ordinary electric arcTungent filament of an incandescent lampDiffusive light a white surface under sunshine 1.5×1091.5×108(5~15)×1063×104The surface of the moon seen from the earthThe surface of paper when reading and writing under man-made lightingThe clear sky in daylight 2.5×103105×103应用光学讲稿6.5 Illuminance formula and the Cosine Law of luminous intensity 1.The formula of illuminance Assume the point light source A lightens a tiny plane dS, the distance between the light source and dS is l, the angle between the normal line direction ON on its surface and the lighting direction is , assume the luminous intensity of the lighting source on direction AO is I, then, calculate the illuminance on the tiny area dS.应用光学讲稿the formula of illuminance应用光学讲稿Note: The above formula educed from the point light source can also be applied in the situation in which the size of the light source is relatively small compared with the distance l. When the size is bigger, the formula may not be suitable, for example the fluorescent lamp lights in the room; but it will be applied when the fluorescent lamp lights outside the room at a long distance.应用光学讲稿Question: There are two tungsten lamps in one room, the power of one is 60W,and the other one is 40W,which is more brighter?luminous efficacy K is the same:应用光学讲稿The above illuminance formula is often used to measure the luminous intensity of a light source.There are two same surfaces, we have known the standard light source with and . According to: Adjust the distance between the light sources and surfaces, and . I1I2l1l2a standard light source a light source for testing 应用光学讲稿When we see the illuminances are the same on both surfaces, we can obvious establish the following formula:Or we can get it as:Based on the known value of , detect and , substitute them into the above formula, we can get the luminous intensity of the light source to be measured.应用光学讲稿2. Cosine Law of luminous intensity Most illuminant objects with even lighting have almost the same luminance in all directions, they are called Lambert’s radiator. Assume a lighting tiny area dS has luminous intensity in the direction perpendicular to the tiny area, and the luminance of the illuminant is the same in all directions, dsI0I应用光学讲稿The above formula is the cosine law of luminous intensity, or Lambert’s cosine law. The illuminants in accordance with the cosine law is called cosine radiator or Lambert’s radiator.II0ds应用光学讲稿Now let us find out the luminous flux from a lighting tiny surface: Assume the luminance of a lighting surface is L, its area is dS, We are going to calculate its total luminous flux within a slope aperture angle u. the luminous flux within a tiny solid angle:Ldsu应用光学讲稿Substitute the relation between I and into the formula of ,we have: If the surface is a one lighting surface:If the surface is a two lighting surfaces, the result is:应用光学讲稿Example: If the power of an aerate tungsten lamp is 300W, the luminous efficacy is 20 1m/W, the size of the filament is 8×8.5mm2, and it is a two lighting surfaces. Calculate the average luminance inside the surface of the filament.if we can find out and ,then we can get L.应用光学讲稿6.6 Luminance of Perfect Diffusive SurfaceQuestion: Is there luminance on the wall? Most objects we find in nature do not radiate light rays. Beams of light are diffusively reflected on the surfaces of these objects when they are lighted by other luminants. So there can also be illuminance and luminance on these surfaces.应用光学讲稿1.The definition of perfect diffusive surface If the surface of the lighted object has the same luminance in all directions, we call this kind of surface as perfect diffusive surface. White paper Lime Snow Film screen Wall应用光学讲稿2. the luminance for the perfect diffusive surface If a perfect diffusive surface dS has the illuminance E, calculate the luminance for the perfect diffusive surface.The luminous flux received by the tiny area dS is::diffuse reflection coefficient of the surface Assume the perfect diffusive surface is a single lighting surface.so:We have:应用光学讲稿Some common diffuse reflection coefficients Lighted surface diffuse reflection coefficient(%) Lighted surface diffuse reflection coefficient(%) MagnesiaLimeSnowWhite paperWhite sand 96917870~8025ClayMoonBlacklandBlack woolen clothBlack velour 1610~205~101~40.2~1应用光学讲稿6.7 Luminance of light beam in optical systems1. The situation of homogeneous and transparent media the luminous flux emitting from is:应用光学讲稿If we neglect the loss of light energy, the luminous flux emitting from to must equal to that emitting from .Based on the above discussions, we can draw a conclusion: In homogeneous and transparent media, if we neglect the loss of light energy, the luminances of different points on the same light beam are the same in the direction of the light beam. 应用光学讲稿2.The situation of refraction Analysis:Assume the luminance of the incident light beam is , take a tiny area dS near point O on the interface of media, whose corresponding solid angle is .dsn1n2P应用光学讲稿the luminance of the incident light beam the luminance of the refracted light beam应用光学讲稿应用光学讲稿3. The situation of reflection The situation of reflection can be taken as that of refraction when Therefore, we can get the follow formula of universal relationship:-----equivalent luminance 应用光学讲稿If we neglect the loss of luminous energy in the transmission process of light beam, all points on the same light beam have the same equivalent luminance on the direction of the light beam. 应用光学讲稿4. The luminance of the image in the ideal optical systemThe luminance of the object and the image have the following relationship:When the indices in both object and image spaces are the same, then:We need to take the loss of light energy into consideration in the actual optical systems, so::the transmission coefficient of optical systems 应用光学讲稿6.8 The illuminance of the image plane1. The illuminance equation of image points on the axis Assume the luminance of point A on the axis of the object plane is L, image slope aperture angle is ,calculate the illuminance of the image plane .应用光学讲稿应用光学讲稿2. The illuminance equation for image points off the axis The illuminance of points off the axis on the image plane must be smaller than imlluminance of points on the axis. 应用光学讲稿First, when the light beam off the axis is slanted, the projection area of exit pupil in the direction perpendicular to the light beam is smaller. the luminous intensity of off-the-axis points is smaller than the luminous intensity at points on the axis.应用光学讲稿Second, the image distance is larger than that of the points on the axis.Substitute the above relation into we have:According to the Eq. From this we have:应用光学讲稿of different field angle of view ω’ω’10º20º30º0.9410.7800.56340º50º60º0.3440.1710.063In the actual optical systems, the phenomenon of vignetting always exists. Then:应用光学讲稿6.9 Illuminance and F number of the image plane of the camera lens1.Illuminance of the image planeSubstitute the above relation into Eq.We have:-----the relative aperture of the camera lens H'DF'U'max应用光学讲稿2.Aperture,F numberAperture: relative aperture Usually the method of calibration is to reduce half of the illuminance of the image plane successively. The relative aperture must be changed with the geometric progression . ……F number: the reciprocal of the relative aperture, shown as F.-----F aperture应用光学讲稿If the transmission coefficient of an objective lens is , its relative aperture is ------T apertureThen, the illuminance of the image plane:3. The amount of exposure If the illuminance of the image plane of the camera lens is E, the exposure time is t, obviously, the amount of exposure, H, received by unit area of the film is H=E t (lx .s)应用光学讲稿6.10 The subjective brightness of human eyes1.Basic conception(1)The subjective brightness definition: the intensity of stimulation on retina through the eyes by the outside objects. It is a subjective quantity that shows the eye’s different feelings of lightness and darkness. The subjective brightness can be expressed by clear quantities of photometry.应用光学讲稿(2)The classification of the outside objects luminous point:If the visual angle of an object to the eye is very small and the image size on the retina is smaller than the diameter of one nerve cell, we call such an illuimant as luminous point. luminous surface:If an object is rather big and forms a quite big area on the retina, such an object is called as luminous surface. 应用光学讲稿2. luminous pointl'=f 'lAIn the situation of the luminous point, the subjective brightness is decided by luminous flux entering the eye. 应用光学讲稿All' =f 'According to Eq.:And:Then:应用光学讲稿Conclusion: From the above equation, we can see that in the situation of a luminous point, the subjective brightness is proportional to the luminous intensity I of the light source and the square of the diameter of the pupil, while inversely proportional to the square of the distance between the light source and the eye. For example:observe two starsobserve lamps along a strait street应用光学讲稿 n=1 n' =1.336luminance of the object transmission coefficient of the eye 3. Luminous surface imaging illuminance Eq. 应用光学讲稿The subjective brightness of human eyes is:In ordinary life we feel that the father the distance the dimmer will be the subjective brightness whether it is the luminance point or surface. Does it conflict with the above conclusion??应用光学讲稿6.11 The subjective brightness when observing through telescope 应用光学讲稿1. Luminous point (1) D΄≤ a:When the exit pupil diameter of the instrument is smaller than or equal to the pupil diameter of the eyes. the luminous flux entering the instrument the luminous flux emitted from the instrument the eye’s subjective brightness through the instrument应用光学讲稿If the luminous intensity of the object point is fixed , the larger the telescope diameter, the larger the observation distance will be. So, with a telescope of larger diameter, we can see farther stars.the eye’s subjective brightness through the instrumentWith a fixed observation distance , the larger the telescope diameter, the smaller the I will be. So, with a telescope of larger diameter, we can see dimmer luminous stars.Conclusion: The larger the diameter the better the telescope. 应用光学讲稿DaDD´a(2) D’> a: The exit pupil diameter of the instrument is larger than the pupil diameter of the eye 应用光学讲稿Γ=Da/aCompare the two situations with those by the naked eyes:When D'≤a, the ratio of the subjective brightnesses is:When D'>a, the ratio of the subjective brightnesses is:应用光学讲稿When D'≤a, the ratio of the subjective brightnesses is:Γ=Da/aWhen D'>a, the ratio of the subjective brightnesses is:Example: There is a telescope in one astronomical observatory, the telescope diameter is 2.16m, the pupil diameter of the eye is 8mm in the night.D’>a: Suppose the magnifying power Γ is 10, the telescope can enhance the subjective brightness 100 times. 应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿应用光学讲稿the luminance of the image of a telescope L'L' =τILthe diameter of the incident light beam entering the eyes D'2. Luminous surface(1) D'< a: The exit pupil diameter of the instrument is smaller than the pupil diameter of the eye 应用光学讲稿the subjective brightness:Compare formulae with that by the naked eye, we have:应用光学讲稿(2) D΄≥ a: The exit pupil diameter of the instrument is larger than or equal to the pupil diameter of the eye Divide it by ,we have: 应用光学讲稿DiscussionD'=a:DaThe diameter of the incident rays D==D'=a; the area enhances Γ2 times;;The image on the retina enhances also Γ times,,and the area enhancesΓ2 times;;So the illuminace will be unchanged, and since there will be losses of reflection and absorption the finally illuminace will be smaller.应用光学讲稿D'












