好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

交通问题中的数学模型的分类与研究.doc

28页
  • 卖家[上传人]:新**
  • 文档编号:536113632
  • 上传时间:2023-02-21
  • 文档格式:DOC
  • 文档大小:2.60MB
  • / 28 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 石河子大学毕业论文题目: 交通问题中的数学模型的分类与研究 院 (系): 师 范 学 院 专 业: 数学与应用数学 班 级: 2006级 学 号: 2006010005 姓 名: 陈 明 春 指导教师: 刘 旭 阳 完成时间: 2010年6月 目 录摘 要: 1关键词: 1引 言 1一、交通问题中数学模型的分类 11、数学微分模型 11.1交通流的基本函数: 21.2连续交通流方程: 31.3间断交通流方程 51.4应用范围: 61.5模型优缺点: 62、动力学模型 62.1动力学交通流模型研究进展 62.2交通流的流体力学模型 72.3交通流的气体动力论模型 72.4交通流的跟驰模型 82.5元胞自动机模型 10二、基于元胞自动机理论模型及其模拟研究 121、交通流元胞自动机模型概述 121.1 一维交通流元胞自动机模型 131.11 NS模型及其改进模型 131.12 FI模型 172、交通流元胞自动机模拟 182.1元胞参数定义 182.2 元胞自动机规则 192.3数值模拟 202.4 结果分析 232.5 结论 24三、小结 24四、参考文献 25交通问题中的数学模型的分类与研究陈明春(新疆石河子大学 师范学院数学系 新疆 832000)摘 要:本课题对以往交通问题中的数学模型进行分类总结,然后着重分析每种方法比如动力学模型等模型的使用范围以及相应的缺陷,并且在各种方法总结比较中,挑选动力学模型中元胞自动机模型进行使用,把车辆在路段上运动的变化规律表述为元胞自动机的演变规则,建立基于元胞自动机理论的交通流模拟模型。

      标定了元胞长度和最大速度等参数,继而提出反映车辆在路段上自由行驶、跟驰行驶和减速行驶等交通行为的元胞自动机规则关键词: 交通流 数学模型 分类 元胞自动机引 言:随着我国改革开放的不断深入,城乡经济的进一步繁荣,城市规模的日益扩大,城市交通中的各种机动车辆和非机动车辆数量迅速增加,从而使城市道路更为拥挤和难以管理,交通堵塞和拥挤严重、城市公共交通发展较慢,公交工具数量不足,结构单一,运营效率和效益低、交通管理设施、技术差,从而导致交通问题屡见不鲜因此,研究城市交通问题能帮助我们深入分析城市交通系统中交通需求与交通供给之间的内在作用规律,探究新的解决途径,为城市交通的良好运作与人们安全出行提供必要的理论保证一、交通问题中数学模型的分类1、数学微分模型微分模型也是研究交通问题的一类重要方法,它以微积分学为基础,把车辆看成连续的质点,建立连续的交通流模型下面以红绿灯下的交通流模型为例介绍数学微分模型各种类型的汽车一辆接着一辆沿着公路飞驰而过,其情景就像湍急的河流中奔腾的流水一样在这种情况下,很难分析每辆汽车的运动规律,而是把车辆对看作连续的流体,称为交通流研究每一时刻通过公路上每一点的交通流的流量、速度和密度等变量间的关系。

      1.1交通流的基本函数:研究对象是无穷长公路上沿单向流动的一条车流假定不允许超车,公路上也没有岔道,即汽车不会从其他通道进入或驶出在公路上选定一个坐标原点,记作以车流运动方向作为轴的正向,于是公路上任一点用坐标表示对于每一时刻和每一点,引入3个基本函数:流量时刻单位时间内通过点的车辆数;密度时刻点处单位长度内的车辆数;速度时刻通过点的车流速度将交通流视为一维流体场,这些函数可以类比作流体的流量、密度和速度这里的速度不表示固定的哪一辆汽车的速度3个基本函数之间存在着密切关系首先可以知道,单位时间内通过的车辆数等于单位长度内的车辆数与车流速度的乘积,即 (1)其次,车流速度 总是随着车流密度的增加而减小的当一辆汽车前面没有车辆时,它将以最大速度行驶,可以描述为 时 (最大值);当车队首尾相接造成堵塞时,车辆无法前进,可记为(最大值)时如果简化假设是的线性函数,则有: (2)再由可得: (3)表明流量随车辆密度的增加先增后减,在处达到最大值。

      流量与密度的关系其中(2),(3)式是在平衡状态下,和之间的关系,即假定所有车辆的速度相同,公路上各处的车流密度相同1.2连续交通流方程:将交通流类比于流体,假定和都是和的连续、可微函数,并满足解析运算所需要的性质,下面根据守恒原理导出这些函数满足的方程由积分知道,时刻,区间内的车辆数为,单位时间内通过,点的流量和之差等于车辆数的变化率,即: (4)这是交通流的积分形式,它并不需要函数对的连续性在关于和的解析性质的假定下,(4)式的左右端可分别记作所以(4)式化为:由于区间是任意的,所以有: (5)这就是连续交通流方程当把表示为的已知函数时(如(3)式),导数也是已知函数,记作,于是按照求导法则有这样,方程(5)可以写成: (6)其中是初始密度方程(6)的解描述了任意时刻公路上各处的车流分布情况,再由即可得到流量函数6)式是一阶拟线性偏微分方程,用特征方程和首次积分法求解得到结果: (7) (8)容易验证(7),(8)满足方程(6)。

      等式对求导有: (9)等式对求导有:,将(7)式代入得到这个结果代入(9)式就是方程(6)那么(7),(8)满足初始条件则是显然的方程(6)的特征线方程(6)的解(7),(8)有着明显的几何意义,在平面上(8)式表示一族直线,它与轴的交点坐标为,斜率为(对的斜率),当函数给定后,随着改变这族直线成为方程的特征线则(7)式表明,沿每一条特征线车流密度是常数,当然在不同特征线上随着不同而不同1.3间断交通流方程当密度函数出现间断时,是具有实际意义的也是常见的一种情况一连串的间断点在平面上构成一条孤立的、连续的间断线,记作并假定它是可微的在任意时刻,在轴上是孤立的,取区间,使在内交通流方程的积分形式(4)仍然成立将分为两个区间和,在每个区间内是连续、可微的,于是有:其中和分别表大于示从小于和一侧趋向时的极限值在这种趋向下和的极限值记作:和在间断点处的跳越值记作:如图所示:当时(11)式中的=0,=0利用(12),(13)式的记号立即得到或者记作: 在处间断这就是间断线应满足的方程,其中和可以用连续交通流方程得到的和在间断点处取极限值算出。

      1.4应用范围:该模型适用于研究一维单车道交通流,即研究对象是无穷长公路上沿单向流动的一条车流,并且前提条件是不允许超车,公路上没有岔道,汽车不会从其他通道进入或驶出1.5模型优缺点: 该模型按照守恒关系建立微分交通流模型,利用特征线求解,能够合理的解释很多交通流中出现的现象同时,该模型利用间断线的研究方法,能够很好的研究解决红绿灯信号以及类似于红绿灯信号模型出现的情况2、动力学模型动力学模型是研究现代交通问题的主要方法之一,它主要是以元胞自动机(CA)为动态模型,建立一种适合普遍的交通问题的数学建模方法 交通问题中的研究对象如车辆和人都是不连续的,车流运动也有很大的随机性和不确定性,用非线性的离散模型来刻划交通现象,这在交通研究的方法上是一个创新模拟的基本思想是将路面格子化,每个格子视为有独立思维的小元胞,若干个小元胞对应一辆或几辆小汽车,把车辆在路面上的运动看成是格子场的演变,元胞可以像小汽车一样通过观察周围环境的变化来决定下一步的运动状态,凡车辆应遵守的交通规则都表述为元胞的演变规则,车辆行驶的加速、减速、惯性、跟驰等均可以通过元胞的速度变化规则来详细刻划,从而把交通流的变化规律转化为元胞的演变规则加以研究。

      2.1动力学交通流模型研究进展动力学交通流模型的发展是伴随着汽车工业和交通需求的迅速增长而发展起来的上个世界30年代,J.P.Kinzer首次将泊松分布应用于交通流;50年代初,LPipes首次提出跟驰模型;1955年,M.J.Lighthill ,J.B.Whitbam以及P.I.Richards各自独立的提出了交通流力体模型,简称LWR模型20世纪70年代,H.J.Payne提出了交通动量方程和连续性方程构成的交通流动力学高阶模型;与此同时,著名的物理学家I.Prigogine和R.Herman运用气体动理论提出了交通流气体动理论模型在非线性科学和复杂科学的推动下,KNagel和MSchreckenberg提出了一维元胞自动机交通流模型,简称NS模型;后来,O.Biham,A .Aiddleton和D.Levine提出了二维的元胞自动机交通流模型,简称BML模型概括起来,目前,关于动力学交通流模型的研究主要分为三大类型:基于连续性描述的流体力学模型、基于概率统计描述的气体动力论模型、基于微观离散描述的跟驰模型以及元胞自动机模型2.2交通流的流体力学模型交通流的流体力学模型将交通流视为由大量车辆组成的可压缩连续流体介质,力图以车辆的平均密度,平均速度,交通流量等宏观量来刻画车辆的平均合作行为。

      流体力学模型在推动交通流理论的发展过程汇总,起着非常重要的作用,其中重要的模型有LWR模型、Payne模型等LWR模型描述了“交通激波”现象,也就是交通过程只能给形成的车辆密度的不连续性和由此行程的交通阻塞,以及交通阻塞的消散过程但是,LWR模型假设了速度、密度之间始终满则平衡关系,因此该模型不适用于描述本质上处于非平衡态的交通现象,例如存在车辆上下、下砸到的交通,时停时走的“幽灵式”交通阻塞,交通迟滞等延续LWR模型的思想,并考虑交通流速度动态变化,在引用连续性方程的同时,引进动力学方程,Payne建立了如下两个方程构成的高阶连续模型—Payne模型: (1) (2)(2)式的右边第一项为期望项,为期望指数,反映驾驶员对前方交通状态改变的反应过程;第二项式驰豫项,描述车辆速度在弛豫时间内向平衡速度的调整;最优速度函数和其他参数一般通过对所考察的道路实测和参数辨识来确定模型优缺点:Payne模型允许速度偏离平衡速度密度关系,较之LWR模型能更准确地描述实际车流,即可描述诸如交通激波形成以及阻塞消散,又能够分析任意小扰动引起的交通失稳、交通迟滞、时停时走的交通形成现象等等。

      2.3交通流的气体动力论模型著名的物理学家Prigogine和著名的交通流专家Herman在研究交通流时认为不能忽略车辆的个体行为对交通流的影响,个体行为不同会带来不同的集。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.