
奥数第一讲 因式分解(一).doc
17页教学视频-公开课,优质课,展示课,课堂实录( 教师之家-免费中小学教学资源下载网( 第一讲 因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地 应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解 方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容 所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有 着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公 式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上, 对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用, 即为因式分解中常用的公式,例如:(1)a 2 -b 2 =(a+b)(a-b);(2)a 2 ±2ab+b 2 =(a±b) 2 ;(3)a 3 +b 3 =(a+b)(a 2 -ab+b 2 );(4)a 3 -b 3 =(a-b)(a 2 +ab+b 2 ).下面再补充几个常用的公式:(5)a 2 +b 2 +c 2 +2ab+2bc+2ca=(a+b+c) 2 ;(6)a 3 +b 3 +c 3 -3abc=(a+b+c)(a 2 +b 2 +c 2 -ab-bc-ca);(7)a n -b n =(a-b)(a n-1 +a n-2 b+a n-3 b 2 +…+ab n-2 +b n-1 )其中n为正整数;(8)a n -b n =(a+b)(a n-1 -a n-2 b+a n-3 b 2 -…+ab n-2 -b n-1 ),其中n为偶数;(9)a n +b n =(a+b)(a n-1 -a n-2 b+a n-3 b 2 -…-ab n-2 +b n-1 ),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、 指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x 5n-1 y n +4x 3n-1 y n+2 -2x n-1 y n+4 ;教学视频-公开课,优质课,展示课,课堂实录( 教师之家-免费中小学教学资源下载网( 3 -8y 3 -z 3 -6xyz;(3)a 2 +b 2 +c 2 -2bc+2ca-2ab;(4)a 7 -a 5 b 2 +a 2 b 5 -b 7 .解 (1)原式=-2x n-1 y n (x 4 n-2x 2 ny 2 +y 4 )=-2x n-1 y n [(x 2 n) 2 -2x 2 ny 2 +(y 2 ) 2 ]=-2x n-1 y n (x 2 n-y 2 ) 2=-2x n-1 y n (x n -y) 2 (x n +y) 2 .(2)原式=x 3 +(-2y) 3 +(-z) 3 -3x(-2y)(-Z)=(x-2y-z)(x 2 +4y 2 +z 2 +2xy+xz-2yz).(3)原式=(a 2 -2ab+b 2 )+(-2bc+2ca)+c 2=(a-b) 2 +2c(a-b)+c 2=(a-b+c) 2 .本小题可以稍加变形,直接使用公式(5),解法如下:原式=a 2 +(-b) 2 +c 2 +2(-b)c+2ca+2a(-b)=(a-b+c) 2(4)原式=(a 7 -a 5 b 2 )+(a 2 b 5 -b 7 )=a 5 (a 2 -b 2 )+b 5 (a 2 -b 2 )=(a 2 -b 2 )(a 5 +b 5 )=(a+b)(a-b)(a+b)(a 4 -a 3 b+a 2 b 2 -ab 3 +b 4 )=(a+b) 2 (a-b)(a 4 -a 3 b+a 2 b 2 -ab 3 +b 4 )教学视频-公开课,优质课,展示课,课堂实录( 教师之家-免费中小学教学资源下载网( 分解因式:a 3 +b 3 +c 3 -3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析 我们已经知道公式 (a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3的正确性,现将此公式变形为 a 3 +b 3 =(a+b) 3 -3ab(a+b).这个 式也是一个常用的公式,本题就借助于它来推导.解 原式=(a+b) 3 -3ab(a+b)+c 3 -3abc=[(a+b)3+c 3 ]-3ab(a+b+c)=(a+b+c)[(a+b) 2 -c(a+b)+c 2 ]-3ab(a+b+c)=(a+b+c)(a 2 +b 2 +c 2 -ab-bc-ca).说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结 论,例如:我们将公式(6)变形为a 3 +b 3 +c 3 -3abc显然,当a+b+c=0时,则a 3 +b 3 +c 3 =3abc;当a+b+c>0时,则 a 3 +b 3 +c 3 -3abc≥0,即a 3 +b 3 +c 3 ≥3abc,而且,当且仅当a=b=c时,等号 成立.如果令x=a 3 ≥0,y=b 3 ≥0,z=c 3 ≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x 15 +x 14 +x 13 +…+x 2 +x+1.教学视频-公开课,优质课,展示课,课堂实录( 教师之家-免费中小学教学资源下载网( 这个多项式的特点是:有16项,从最高次项x 15 开始,x的次 数顺次递减至0,由此想到应用公式a n -b n 来分解.解 因为x 16 -1=(x-1)(x 15 +x 14 +x 13 +…x 2 +x+1),所以说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧, 这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化 简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消 为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的 项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个 仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是 使多项式能用分组分解法进行因式分解.例4 分解因式:x 3 -9x+8.分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法, 注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x 3 -9x-1+9=(x 3 -1)-9x+9=(x-1)(x 2 +x+1)-9(x-1)=(x-1)(x 2 +x-8).解法2 将一次项-9x拆成-x-8x.原式=x 3 -x-8x+8教学视频-公开课,优质课,展示课,课堂实录( 教师之家-免费中小学教学资源下载网( 3 -x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x 2 +x-8).解法3 将三次项x 3 拆成9x 3 -8x 3 .原式=9x 3 -8x 3 -9x+8=(9x 3 -9x)+(-8x 3 +8)=9x(x+1)(x-1)-8(x-1)(x 2 +x+1)=(x-1)(x 2 +x-8).解法4 添加两项-x 2 +x 2 .原式=x 3 -9x+8=x 3 -x 2 +x 2 -9x+8=x 2 (x-1)+(x-8)(x-1)=(x-1)(x 2 +x-8).说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些 项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活 变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x 9 +x 6 +x 3 -3;(2)(m 2 -1)(n 2 -1)+4mn;(3)(x+1) 4 +(x 2 -1) 2 +(x-1) 4 ;教学视频-公开课,优质课,展示课,课堂实录( 教师之家-免费中小学教学资源下载网( 3 b-ab 3 +a 2 +b 2 +1.解 (1)将-3拆成-1-1-1.原式=x 9 +x 6 +x 3 -1-1-1=(x 9 -1)+(x 6 -1)+(x 3 -1)=(x 3 -1)(x 6 +x 3 +1)+(x 3 -1)(x 3 +1)+(x 3 -1)=(x 3 -1)(x6+2x3+3)=(x-1)(x 2 +x+1)(x 6 +2x 3 +3).(2)将4mn拆成2mn+2mn.原式=(m 2 -1)(n 2 -1)+2mn+2mn=m 2 n 2 -m 2 -n 2 +1+2mn+2mn=(m 2 n 2 +2mn+1)-(m 2 -2mn+n 2 )=(mn+1) 2 -(m-n) 2=(mn+m-n+1)(mn-m+n+1).(3)将(x 2 -1) 2 拆成2(x 2 -1) 2 -(x 2 -1) 2 .原式=(x+1) 4 +2(x 2 -1) 2 -(x 2 -1) 2 +(x-1) 4=[(x+1) 4 +2(x+1) 2 (x-1) 2 +(x-1) 4 ]-(x 2 -1) 2=[(x+1) 2 +(x-1) 2 ] 2 -(x 2 -1) 2=(2x 2 +2) 2 -(x 2 -1) 2 =(3x 2 +1)(x 2 +3).(4)添加两项+ab-ab.原式=a 3 b-ab 3 +a 2 +b 2 +1+ab-ab=(a 3 b-ab 3 )+(a 2 -ab)+(ab+b 2 +1)教学视频-公开课,优质课,展示课,课堂实录( 教师之家-免费中小学教学资源下载网( 2 +1)=a(a-b)[b(a+b)+1]+(ab+b 2 +1)=[a(a-b)+1](ab+b 2 +1)=(a 2 -ab+1)(b 2 +ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以 不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先 将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到 拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体, 并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x 2 +x+1)(x 2 +x+2)-12.分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们 不妨将x 2 +x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解 设x 2 +x=y,则原式=(y+1)(y+2)-12=y 2 +3y-10=(y-2)(y+5)=(x 2 +x-2)(x 2 +x+5)=(x-1)(x+2)(x 2 +x+5).说明 本题也可将x 2 +x+1看作一个整体,比如今x 2 +x+1=u,一样可 以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式: (x 2 +3x+2)(4x 2 +8x+3)-90.分析 先将两个括号内的多项式分解因式,然后再重新组合.解 原式=(x+1)(x+2)(2x+1)(2x+3)-90。












