
全国各地2015年中考数学试卷解析分类汇编(第2期)专题43跨学科结合与高中衔接问题.doc
3页跨学科结合与高中衔接问题一.选择题 1.(2015•东营,第8题3分)下列命题中是真命题的是( ) A. 确定性事件发生的概率为1 B. 平分弦的直径垂直于弦 C. 正多边形都是轴对称图形 D. 两边及其一边的对角对应相等的两个三角形全等 考点: 命题与定理. 分析: 根据概率的求法、垂径定理、轴对称图形的概念和三角形确定的判定定理进行判断即可. 解答: 解:确定性事件发生的概率为1或0,故A错误; 平分弦(不是直径)的直径垂直于弦,故B错误; 正多边形都是轴对称图形,故C正确; 两边及其一边的对角对应相等的两个三角形不一定全等,故D错误, 故选:C. 点评: 本题考查的是命题的真假判断,掌握概率的求法、垂径定理、轴对称图形的概念和三角形确定的判定定理是解题的关键. 2.(2015•娄底,第10题3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是( ) A. B. C. D. 考点: 函数的图象. 分析: 开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变. 解答: 解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变. 故选:A. 点评: 本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象. 二.填空题 1. (2015广西崇左第18题3分)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x= . 1【解析】 =12,即(x+3)2-(x-3)2=12,12x=12,x=1. 点评:对于新定义的题,首先要看懂运算的法则,把新定义问题转化为常规的数学问题来解决.本题新定义的实质是将四个整式交叉相乘再求差,运用完全平方公式,去括号、合并同类项法则等进行化简,最后转化为解方程确定结果. 三.解答题 1.(2015•甘肃庆阳,第27题,12分)定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2. (1)max{,3}= 3 ; (2)已知y1=和y2=k2x+b在同一坐标系中的图象如图所示,若max{,k2x+b}=,结合图象,直接写出x的取值范围; (3)用分类讨论的方法,求max{2x+1,x﹣2}的值. 考点:反比例函数与一次函数的交点问题.专题:新定义.分析:(1)根据3>和已知求出即可;(2)根据题意得出≥k2x+b,结合图象求出即可; (3)分为两种情况:当2x+1≥x﹣2时,当2x+1<x﹣2时,结合已知求出即可. 解答:解:(1)max{,3}=3.故答案为:3; (2)∵max{,k2x+b}=, ∴≥k2x+b, ∴从图象可知:x的取值范围为﹣3≤x<0或x≥2; (3)当2x+1≥x﹣2时,max{2x+1,x﹣2}=2x+1, 当2x+1<x﹣2时,max{2x+1,x﹣2}=x﹣2. 点评:本题考查了一次函数和反比例函数的交点问题的应用,能读懂题意是解此题的关键. 2.(2015•黄石第20题,8分)解方程组. 考点: 高次方程.分析: 由②得③,把③代入①解答即可.解答: 解:,由②得③,把③代入①得:,解得:,当x1=0时,y1=1;当时,,所以方程组的解是.点评: 此题考查高次方程问题,关键是把高次方程化为一般方程再解答. 。
