
高二数学点到直线距离ppt课件.ppt
15页过该点(如下图点P)作直线(图中L)的垂线,点P与垂足Q之间的线段│PQ│长度.点到直点到直线的的间隔是指隔是指:LPQ什么是点到直线的间隔?问题:知点知点P〔〔x〕和直线L::Ax+By+C=0(A•B≠0), P不在直不在直线L上,上,试求求P点到直点到直线L的的间隔隔..QxoyL思绪一:P思绪二:构造直角三角形QxyP(x0,y0)NOM(x1,y0)(x0,y2)L:Ax+By+C=0当PM//y轴时,留意到:角∠MPQ与直线L的倾斜角有关. ∠ MPQ= α (00 < α<900)或 ∠ MPQ=180 °-α (900 < α<1800 〕详细分析分析|PQ|=|PM|cos∠∠MPQ在Rt∆MQP中,问题: ∠ MPQ与倾斜角α有什么关系呢?)))PMQxyo(α12∠ MPQ= α∠ MPQ=180 ° -α前往前往1)yxoPQMα)公式阐明〔〔1〕分子是将〕分子是将P点坐点坐标代入直代入直线方程左端的方程左端的绝对值 留意留意:直直线方程方式方程方式为普通式普通式,否那么先整理成普通式;否那么先整理成普通式;〔〔2〕分母是直〕分母是直线方程中方程中x、、y的系数平方和的算的系数平方和的算术根根;〔〔3〕公式〕公式对A=0或或B=0依然成立依然成立.例1〔4〕P〔—2,3〕到直线y= —2的间隔是__________〔2〕P〔—1,1〕到直线y=2x-2的间隔是_________〔3〕P〔2,—3〕到直线x+4= 0的间隔是_________〔1〕P〔—1,2〕到直线2x+y-10=0的间隔是______56〔5〕知点 到直线 的间隔为1,那么 等于〔 〕 例2:求两条平行直线Ax+By+ =0与Ax+By+ =0的间隔. 故所求故所求间隔隔d=解:在直线解:在直线Ax+By+ =0上任取一点,如上任取一点,如P(x0,y0)那么两平行线的间隔就是点那么两平行线的间隔就是点P(x0,y0) 到直线到直线Ax+By+ =0 的间隔的间隔.〔1〕求平行直线3x-4y+8=0和3x-4y-7=0的间隔.练习〔2〕求平行直线3x-4y+8=0和6x-8y-7=0的间隔.3〔3〕求平行直线2x- y=0和2x- y- =0的间隔及 间隔的最大值〔 〕.小结1、了解并掌握点到直、了解并掌握点到直线的的间隔公式的推隔公式的推导及运用及运用:2 、可以推、可以推导两平行两平行线间的的间隔公式隔公式.作业:P54 习题7.3第12. 13. 16. (2)试用向量的知识推导点到直线的间隔公式.(1)(函数思想)点到直线的间隔是衔接点与直线上恣意点间隔中的最小值.:河南省遂平县遂平一高 肖风格:463100: xfg0109peoplemail。
