
2009年高考数学试题分类汇编立体几何.doc
65页2009年高考数学试题分类汇编——立体几何一、选择题1.(2009年广东卷文)给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;. ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是 A.①和② B.②和③ C.③和④ D.②和④ 【答案】D【解析】①错, ②正确, ③错, ④正确.故选D2.(2009广东卷理)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是 A. ①和② B. ②和③ C. ③和④ D. ②和④【解析】选D.3.(2009浙江卷理)在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是 ( )A. B. C. D. . 答案:C 【解析】取BC的中点E,则面,,因此与平面所成角即为,设,则,,即有.4.(2009浙江卷文)设是两个不同的平面,是一条直线,以下命题正确的是( )A.若,则 B.若,则 C.若,则 D.若,则 4.C 【命题意图】此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.【解析】对于A、B、D均可能出现,而对于C是正确的.. 5.(2009北京卷文)若正四棱柱的底面边长为1,与底面ABCD成60°角,则到底面ABCD的距离为 ( )A. B. 1 C. D.【答案】D.w【解析】.k本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念. 属于基础知识、基本运算的考查. 依题意,,如图,,故选D.6.(2009北京卷理)若正四棱柱的底面边长为1,与底面成60°角,则到底面的距离为 ( ) A. B.1 C. D.【答案】D【解析】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念. (第4题解答图)属于基础知识、基本运算的考查. 依题意,,如图,,故选D.7. (2009山东卷理)一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B. C. D. 【解析】:该空间几何体为一圆柱和一四棱锥组成的,2 2 2 正(主)视图 2 2 侧(左)视图 圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为,所以体积为所以该几何体的体积为.答案:C【命题立意】:本题考查了立体几何中的空间想象能力,由三视图能够想象得到空间的立体图,并能准确地俯视图 计算出.几何体的体积.8. (2009山东卷理)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【解析】:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,,则,反过来则不一定.所以“”是“”的必要不充分条件. 答案:B.【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.9. (2009山东卷文)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件 【解析】:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,,则,反过来则不一定.所以“”是“”的必要不充分条件 .答案:B.【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.10.(2009全国卷Ⅱ文) 已知正四棱柱中,=,为重点,则异面直线与所形成角的余弦值为(A) (B) (C) (D) 答案:C解析:本题考查异面直线夹角求法,方法一:利用平移,CD’∥BA',因此求△EBA'中∠A'BE即可,易知EB=,A'E=1,A'B=,故由余弦定理求cos∠A'BE=,或由向量法可求。
11.(2009全国卷Ⅱ文)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C若圆C的面积等于,则球O的表面积等于 × 答案:8π解析:本题考查立体几何球面知识,注意结合平面几何知识进行运算,由12.(2009全国卷Ⅰ理)已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( D )(A) (B) (C) (D) 解:设的中点为D,连结D,AD,易知即为异面直线与所成的角,由三角余弦定理,易知.故选D 13.(2009全国卷Ⅰ理)已知二面角α-l-β为 ,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( C )(A) (B)2 (C) (D)4 解:如图分别作 ,连,又当且仅当,即重合时取最小值故答案选C 14.(2009江西卷文)如图,在四面体中,截面是正方形,则在下列命题中,错误的为. . ∥截面 . . 异面直线与所成的角为答案:C【解析】由∥,∥,⊥可得⊥,故正确;由∥可得∥截面,故正确; 异面直线与所成的角等于与所成的角,故正确;综上是错误的,故选.15.(2009江西卷理)如图,正四面体的顶点,,分别在两两垂直的三条射线,,上,则在下列命题中,错误的为 A.是正三棱锥B.直线∥平面C.直线与所成的角是D.二面角为 . 答案:B【解析】将原图补为正方体不难得出B为错误,故选B16.(2009四川卷文)如图,已知六棱锥的底面是正六边形,则下列结论正确的是 A. B. C. 直线∥ D. 直线所成的角为45°【答案】D【解析】∵AD与PB在平面的射影AB不垂直,所以A不成立,又,平面PAB⊥平面PAE,所以也不成立;BC∥AD∥平面PAD, ∴直线∥也不成立。
在中,PA=AD=2AB,∴∠PDA=45°. ∴D正确17.(2009四川卷文)如图,在半径为3的球面上有三点,=90°,, 球心O到平面的距离是,则两点的球面距离是 A. B. C. D.2【答案】B【解析】∵AC是小圆的直径所以过球心O作小圆的垂线,垂足O’是AC的中点 O’C=,AC=3,∴BC=3,即BC=OB=OC∴ ,则两点的球面距离=18.(2009全国卷Ⅱ理)已知正四棱柱中,为中点,则异面直线与所成的角的余弦值为 A. B. C. D. 解:令则,连∥ 异面直线与所成的角即与所成的角在中由余弦定理易得故选C19.(2009辽宁卷理)正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为(A)1:1 (B) 1:2 (C) 2:1 (D) 3:2【解析】由于G是PB的中点,故P-GAC的体积等于B-GAC的体积 在底面正六边形ABCDER中ABCDEFH BH=ABtan30°=AB 而BD=AB 故DH=2BH 于是VD-GAC=2VB-GAC=2VP-GAC【答案】C20.(2009宁夏海南卷理) 如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是 (A)(B)(C)三棱锥的体积为定值(D)异面直线所成的角为定值解析:A正确,易证B显然正确,;C正确,可用等积法求得;D错误。
选D.21.(2009宁夏海南卷理)一个棱锥的三视图如图,则该棱锥的全面积(单位:c)为(A)48+12 (B)48+24 (C)36+12 (D)36+24解析:选A.22.(2009湖北卷文)如图,在三棱柱ABC-A1B1C1中,∠ACB=900,∠ACC1=600,∠BCC1=450,侧棱CC1的长为1,则该三棱柱的高等于A. B. C. D. 【答案】A【解析】过顶点A作底面ABC的垂线,由已知条件和立体几何线面关系易求得高的长.23.(2009湖南卷文)平面六面体中,既与共面也与共面的棱的条数为【 C 】A.3 B.4 C.5 D.6 解:如图,用列举法知合要求的棱为:、、、、,故选C.24.(2009辽宁卷文)如果把地球看成一个球体,则地球上的北纬纬线长和赤道长的比值为(A)0.8 (B)0.75 (C)0.5 (D)0.25【解析】设地球半径为R,则北纬纬线圆的半径为Rcos60°=R 而圆周长之比等于半径之比,故北纬纬线长和赤道长的比值为0.5.【答案】C25.(2009全国卷Ⅰ文)已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为(A) (B) (C) (D) 【解析】本小题考查棱柱的性质、异面直线所成的角,基础题。
同理7)解:设的中点为D,连结D,AD,易知即为异面直线与所成的角,由三角余弦定理,易知.故选D 26。
