好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

浙江省温州市苍南县2023学年数学九上期末质量检测模拟试题含解析.doc

19页
  • 卖家[上传人]:汽***
  • 文档编号:528873283
  • 上传时间:2022-10-21
  • 文档格式:DOC
  • 文档大小:1.12MB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号回答非选择题时,将答案写在答题卡上,写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题(每小题3分,共30分)1.一元二次方程x2﹣x﹣2=0的解是( )A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=22.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是(  )A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位3.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x…﹣3﹣1﹣101134…y…1150﹣3﹣4﹣305…给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为(  )A.0 B.1 C.1 D.34.的面积为2,边的长为,边上的高为,则与的变化规律用图象表示大致是( )A. B.C. D.5.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了(  ).A.10° B.20° C.30° D.60°6.我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是   A.10(1+2x)=18.8 B.=10C.=18.8 D.=18.87.已知点关于轴的对称点在反比例函数的图像上,则实数的值为( )A.-3 B. C. D.38.已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是A. B. C. D.9.二次函数y=x1+bx﹣t的对称轴为x=1.若关于x的一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,则t的取值范围是(  )A.﹣4≤t<5 B.﹣4≤t<﹣3 C.t≥﹣4 D.﹣3<t<510.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )A. B. C. D.二、填空题(每小题3分,共24分)11.设分别为一元二次方程的两个实数根,则______. 12.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.13.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.14.在上午的某一时刻身高1.7米的小刚在地面上的影长为3.4米,同时一棵树在地面上的影子长12米,则树的高度为_____米.15.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________. 16.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线_____.17.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为_____.18.如图,已知∠AOB=30°,在射线OA上取点O1,以点O1为圆心的圆与OB相切;在射线O1A上取点O2,以点O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以点O3为圆心,O3O2为半径的圆与OB相切……,若⊙O1的半径为1,则⊙On的半径是______________.三、解答题(共66分)19.(10分)解方程:.20.(6分)如图,⊙O与△ABC的AC边相切于点C,与BC边交于点E,⊙O过AB上一点D,且DE∥AO,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.21.(6分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)22.(8分)为了测量竖直旗杆的高度,某数学兴趣小组在地面上的点处竖直放了一根标杆,并在地面上放置一块平面镜,已知旗杆底端点、点、点在同一条直线上.该兴趣小组在标杆顶端点恰好通过平面镜观测到旗杆顶点,在点观测旗杆顶点的仰角为.观测点的俯角为,已知标杆的长度为米,问旗杆的高度为多少米?(结果保留根号)23.(8分)先阅读,再填空解题:(1)方程:的根是:________,________,则________,________.(2)方程的根是:________,________,则________,________.(3)方程的根是:________,________,则________,________.(4)如果关于的一元二次方程(且、、为常数)的两根为,,根据以上(1)(2)(3)你能否猜出:,与系数、、有什么关系?请写出来你的猜想并说明理由.24.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.25.(10分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.26.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选D.考点:解一元二次方程-因式分解法.2、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.4、A【分析】根据三角形面积公式得出与的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得∴∵∴与的变化规律用图象表示大致是故答案为:A.【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.5、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.6、C【分析】根据增长率的计算公式:增长前的数量×(1+增长率)增长次数=增长后数量,从而得出答案.【详解】根据题意可得方程为:10(1+x)2=18.8,故选:C.【点睛】本题主要考查的是一元二次方程的应用,属于基础题型.解决这个问题的关键就是明确基本的计算公式.7、A【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为,然后把A′的坐标代入中即可得到k的值.【详解】解:点关于x轴的对称点A'的坐标为,把A′代入,得k=-1×1=-1.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8、D【详解】根据题意有:xy=24;且根据x,y实际意义x、y应大于0,其图象在第一象限.故选D.9、A【解析】根据抛物线对称轴公式可先求出b的值,一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解相当于y=x1﹣bx与直线y=t的在﹣1<x<3的范围内有交点,即直线y=t应介于过y=x1﹣bx在﹣1<x<3的范围内的最大值与最小值的直线之间,由此可确定t的取值范围.【详解】解:∵抛物线的对称轴x==1,∴b=﹣4,则方程x1+bx﹣t=0,即x1﹣4x﹣t=0的解相当于y=x1﹣4x与直线y=t的交点的横坐标,∵方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=3时,y=9﹣11=﹣3,又∵y=x1﹣4x=(x﹣1)1﹣4,∴当﹣4≤t<5时,在﹣1<x<3的范围内有解.∴t的取值范围是﹣4≤t<5,故选:A.【点睛】本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程的解相当于 与直线y=k的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.10、B【详解】解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.二、填空题(每小题3分,共24分)11、1【分析】先根据m是的一个实数根得出 ,利用一元二次方程根与系数的关系得出 ,然后对原式进行变形后整体代入即可得出答案.【详解】∵m是一元二次方程的一个实数根,∴,即.由一元二次方程根与系数的关系得出,∴.故答案为:1.【点睛】本题主要考查一元二次方程的根及根与系数的关系,掌握一元二次方程根与系数的关系是解题的。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.