
【25年秋】七年级数学上册-阶段拔尖专训6 有理数运算中的规律题 课件.pptx
24页人教版 七年级上,阶段拔尖专训6有理数运算中的规律题,数字规律,1,.,母题,2025,武汉武昌区期中,教材,P53,例,4,观察下列三行,数,,,完成后面的问题,:,2,,,4,,,8,,,16,,;,1,,,2,,,4,,,8,,;,0,,,3,,,3,,,9,,;,1,2,3,4,5,6,7,8,9,(1),观察第,行中数的规律,,,写出第,7,个数是,;,【点拨】,由题意可知第,行中数的规律是,(,2),1,,,(,2),2,,,(,2),3,,,(,2),4,,,所以第,行中第,7,个数为,(,2),7,128,.,128,1,2,3,4,5,6,7,8,9,对比第,两行中位置对应的数,,,可以发现第,行的数是第,行中相应数的,,,对比第,两行中位,置对应的数,,,可以发现第,行的数与,1,的差的相反数即,是第,行对应的数,,,所以第,行中第,8,个数是,(,2),8,1,129,.,(2),请观察三行数的关系,,,直接写出第,行中第,8,个数,是,;,【点拨】,129,1,2,3,4,5,6,7,8,9,(3),取每行中的第,8,个数,,,计算这三个数的和,.,【解】易知第,行中第,8,个数是,(,2),8,256,,,第,行,中第,8,个数是,256,128,.,所以每行中的第,8,个数的和是,256,(,128),129,257,.,1,2,3,4,5,6,7,8,9,等式规律,2,.,2025,扬州广陵区月考,观察下列算式,:,2,1,2,,,2,2,4,,,2,3,8,,,2,4,16,,,2,5,32,,,2,6,64,,,2,7,128,,,2,8,256,,;,3,1,3,,,3,2,9,,,3,3,27,,,3,4,81,,,3,5,243,,,3,6,729,,,3,7,2,187,,,3,8,6,561,,,.,根据上述算式中的规律,,,则,2,2,024,(,3),2,025,的末位数字是,(,A,),A,.,3,B,.,5,C,.,7,D,.,9,1,2,3,4,5,6,7,8,9,因为,2,1,2,,,2,2,4,,,2,3,8,,,2,4,16,,,2,5,32,,,2,6,64,,,2,7,128,,,2,8,256,,,所以,2,n,的末位数字按,2,,,4,,,8,,,6,循环出现,.,又因为,2,024,4,506,,,所以,2,2,024,的末位数字是,6,.,【点拨】,1,2,3,4,5,6,7,8,9,因为,3,1,3,,,3,2,9,,,3,3,27,,,3,4,81,,,3,5,243,,,3,6,729,,,3,7,2,187,,,3,8,6,561,,,所以,3,n,的末位数字按,3,,,9,,,7,,,1,循环出现,.,又因为,2,025,4,506,1,,,所以,3,2,025,的末位数,字是,3,.,所以,2,2,024,(,3),2,025,的末位数字是,6,3,3,.,A,【,答案,】,1,2,3,4,5,6,7,8,9,3,.,一个整数的所有正约数之和可以按如下方法求得,,,如,:,6,2,3,,,则,6,的所有正约数之和为,(1,3),(2,6),(1,2),(1,3),12,;,12,2,2,3,,,则,12,的所有正约数之和为,(1,3),(2,6),(4,12),(1,2,2,2,),(1,3),28,;,36,2,2,3,2,,,则,36,的所有正约数之和为,(1,3,9),(2,6,18),(4,12,36),(1,2,2,2,),(1,3,3,2,),91,.,1,2,3,4,5,6,7,8,9,参照上述方法,,,则,144,的所有正约数之和为,,,2,000,的所有正约数之和为,.,【点拨】,144,2,4,3,2,,,则,144,的所有正约数之和为,(1,2,2,2,2,3,2,4,),(1,3,3,2,),403,;,2,000,2,4,5,3,,,则,2,000,的所,有正约数之和为,(1,2,2,2,2,3,2,4,),(1,5,5,2,5,3,),4,836,.,403,4,836,1,2,3,4,5,6,7,8,9,4,.,2025,北京海淀区期末,观察下列算式,,,回答下列问题,:,2,3,5,,,2,2,3,2,13,,,2,3,3,3,35,,,2,4,3,4,,,2,5,3,5,275,,,2,6,3,6,,,2,7,3,7,2,315,,,.,(1),请完成题干中的填空,;,97,793,1,2,3,4,5,6,7,8,9,(2)2,2,024,3,2,024,的个位数字是,;,【点拨】,因为,2,1,3,1,5,,,2,2,3,2,13,,,2,3,3,3,35,,,2,4,3,4,97,,,2,5,3,5,275,,,2,6,3,6,793,,,2,7,3,7,2,315,,,所以,2,n,3,n,的个位数字以,5,,,3,,,5,,,7,这,4,个,数循环出现,.,因为,2,024,4,506,,,所以,2,2,024,3,2,024,的个位数字,是,7,.,7,1,2,3,4,5,6,7,8,9,(3),求,2,2,2,2,2,024,3,3,2,3,2,024,的个位数字,.,【解】,2,2,2,2,2,024,3,3,2,3,2,024,(2,3),(2,2,3,2,),(2,2,024,3,2025,),.,易知,2,n,3,n,的个位数字以,5,,,3,,,5,,,7,这,4,个数循环,出现,.,因为,2,024,4,506,,,且,5,3,5,7,20,,,所以,2,2,2,2,2,024,3,3,2,3,2,024,的个位数,字为,0,.,1,2,3,4,5,6,7,8,9,数表规律,5,.,如图,,,各表格中四个数之间都有相同的规律,,,则第,9,个表,格中右下角的数为,.,1,2,3,7,第,1,个,119,2,3,4,14,第,2,个,3,4,5,23,第,3,个,1,2,3,4,5,6,7,8,9,【点拨】,第,2,个正方形中阴影部分的面积,1,,,第,3,个正,方形中阴影部分的面积,,,所以第,4,个正方,形中阴影部分的面积,.,1,2,3,4,5,6,7,8,9,图形规律,6,.,新考向数学文化,谢尔宾斯基地毯是由波兰数学家谢尔宾,斯基提出的一种具有,“,自相似,”,性质的分形图形,:,将第,1,个正方形分成,9,等份,(,如图,),;,挖去中间的小正方形,,,得,到第,2,个正方形,(,如图,),;,再将余下的,8,个小正方形分成,9,等份,,,挖去中间的小正方形,,,得到第,3,个正方形,(,如图,),;,,这样继续进行下去,,,就得到空格子越来越多的,谢尔宾斯基地毯,.,若图,中大正方形的边长为,1,,,则第,4,个,正方形中阴影部分的面积是,(,D,),D,1,2,3,4,5,6,7,8,9,(,第,6,题,),A,.,B,.,C,.,D,.,1,2,3,4,5,6,7,8,9,7,.,观察图形,(,如图,),规律,,,第,10,个图形中,“,”,的个数和,“,”,的个数的差为,(,B,),A,.,33,B,.,25,C,.,85,D,.,18,(,第,7,题,),1,2,3,4,5,6,7,8,9,【点拨】,因为,n,1,时,,,“,”,的个数是,3,3,1,,,n,2,时,,,“,”,的个数是,6,3,2,,,n,3,时,,,“,”,的个数是,9,3,3,,,n,4,时,,,“,”,的个数是,12,3,4,,,所以第,10,个图,形中,“,”,的个数是,3,10,30,.,1,2,3,4,5,6,7,8,9,因为,n,1,时,,,“,”,的个数是,1,,,n,2,时,,,“,”,的个数是,3,,,n,3,时,,,“,”,的个,数是,6,,,n,4,时,,,“,”,的个数是,10,,,所以第,10,个图形中,“,”,的个数是,55,.,B,【,答案,】,因为,55,30,25,,,所以第,10,个图形中,“,”,的个数和,“,”,的个数的差,为,25,.,1,2,3,4,5,6,7,8,9,数阵规律,8,.,把正整数按如图所示排列起来,,,从上往下,,,依次为第一,行,,,第二行,,,第三行,,,中间用虚线围的一列,,,从上往,下依次为,1,,,5,,,13,,,25,,,则第,10,个数为,.,181,1,2,3,4,5,6,7,8,9,【点拨】,5,1,4,,,13,5,8,,,25,13,12,,,可以发现相邻两,个数下面一个数与上面一个数的差为,4,的倍数,,,根据以上,规律可得第,10,个数为,1,4,8,12,16,36,181,.,1,2,3,4,5,6,7,8,9,9,.,如下数阵是由从,1,开始的连续自然数组成的,,,观察规律并,解答下列问题,:,(1),第,8,行的最后一个数是,.,(2),第,7,行共有,个数,.,64,13,1,2,3,4,5,6,7,8,9,(3),数,2,024,排在第几行从左往右数第几个,?,请简要说,明理由,.,【解】数,2,024,排在第,45,行从左往右数第,88,个,.,理由,:,每一行的最后一个数是所在行数的平方,,,2,024,2025,45,2,,,故,2,024,排在第,45,行,.,易知第,45,行共有,89,个数,,,2,025,是第,45,行从左往右数第,89,个,,,故,2,024,是第,45,行从左,往右数第,88,个,.,1,2,3,4,5,6,7,8,9,。
