
最新自然数平方数列和立方数列求和公式.doc
2页自然数平方数列和立方数列求和公式怎么推导?即:(1)1A2+2A2+3A2+ …… +nA2=n(n+1)(2n+1)/6(2)1A3+2A3+3A3+ …… +nA3=[n(n+1)/2]A2推导过程如下:一.1A2+2A2+3A2+……+n A2=n(n+1)(2 n+1)/6 利用立方差公式nA3-(n-1)A3=1*[nA2+(n-1)A2+n(n-1)]=nA2+(n-1)A2+nA2-n=2*nA2+(n-1)A2-n2A3-1A3=2*2A2+1A2-23A3-2A3=2*3A2+2A2-34A3-3A3=2*4A2+3A2-4 nA3-(n-1)A3=2*nA2+(n-1)A2-n各等式全相加nA3-1A3=2*(2A2+3A2+...+nA2)+[1A2+2A2+...+(n-1)A2]-(2+3+4+...+n)nA3-1=2*(1A2+2A2+3A2+...+nA2)-2+[1A2+2A2+...+(n-1)A2+nA2]-nA2-(2+3+4+... +n)nA3-1=3*(1A2+2A2+3A2+...+nA2)-2-nA2-(1+2+3+...+n)+1nA3-1=3(1A2+2A2+...+nA2)-1-nA2-n(n+1)/23(1A2+2A2+...+nA2)=nA3+nA2+n(n+1)/2=(n/2)(2nA2+2n+n+1)=(n/2)(n+1)(2n+1)故:1八2+2八2+3八2+...+门八2=n(n+1)(2 n+1)/6二. 1A3+2A3+3A3+……+n A3=[ n(n+1)/2]八2证明如下:(n+1)A4-nA4=[(n+1)A2+nA2][(n+1)A2-nA2] =(2nA2+2n+1)(2n+1)=4n A3+6 nT+4 n+1 2a4-1a4=4*1a3+6*1a2+4*1+13八4-2八4=4*2八3+6*2八2+4*2+14八4-3八4=4*3八3+6*3八2+4*3+1(n+1)A4-门八4=4* 门八3+6* 门八2+4* n+1各式相加有(n+1)A4-1=4*(1A3+2A3+3A3...+nA3)+6*(1A2+2A2+...+nA2)+4*(1+2+3+...+n)+n4*(1A3+2A3+3A3+...+nA3)=(n+1)A4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]A21A3+2A3+...+nA3=[n(n+1)/2]A2。
