
湖北省十堰市竹溪县2023学年八年级数学第一学期期末学业质量监测试题含解析.doc
16页2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题(每题4分,共48分)1.计算下列各式,结果为的是( )A. B. C. D.2.若在实数范围内有意义,则x的取值范围是( )A. B. C. D.3.下列各式中,属于分式的是( )A. B. C. D.4.点到轴的距离是( ).A.3 B.4 C. D.5.如图,若圆盘的半径为2,中间有一边长为1的正方形,向圆盘内随机投掷一枚飞镖,则飞镖落在中间正方形内的概率是( )A. B. C. D.6.计算的结果是( )A. B. C. D.7.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°8.2 的平方根是 ( )A.2 B.-2 C. D.9.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数(单位:cm)与方差,要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是( )甲乙丙丁平均数610585610585方差12.513.52.45.4A.甲 B.乙 C.丙 D.丁10.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )A. B. C. D.11.已成为人们的重要交流平台,以下表情中,不是轴对称图形的是( )A. B. C. D.12.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )A. B. C. D.二、填空题(每题4分,共24分)13.计算的结果是_____________.14.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______15.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= °.16.用科学记数法表示:0.00000036= 17.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.18.探索题:已知(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1.则22018+22017+22016+…+23+22+2+1的值的个位数是_____.三、解答题(共78分)19.(8分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.20.(8分)如图,点B,F,C,E在一条直线上BF=CE,AC=DF.(1)在下列条件 ①∠B=∠E;②∠ACB=∠DFE;③AB=DE;④AC∥DF中,只添加一个条件就可以证得△ABC≌△DEF,则所有正确条件的序号是 .(2)根据已知及(1)中添加的一个条件证明∠A=∠D.21.(8分)已知,请化简后在–4≤x≤4范围内选一个你喜欢的整数值求出对应值.22.(10分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .23.(10分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y)+(2x-3y)2.(2)因式分解:(a+b)(a+b-4)+4;24.(10分)如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.25.(12分)小华在八年级上学期的数学成绩如下表所示(单位:分):类别平时期中考试期末考试测验1测验2测验3课题学习成绩887098869087 (1)计算小华该学期平时的数学平均成绩;(2)如果该学期数学的总评成绩根据如图所示的权重计算,请计算出小华该学期数学的总评成绩.26.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.参考答案一、选择题(每题4分,共48分)1、D【分析】分别计算每个选项然后进行判断即可.【详解】解:A. 不能得到,选项错误;B. ,选项错误;C. ,不能得到,选项错误;D. ,选项正确.故选:D.【点睛】本题考查了同底数幂的运算,熟练掌握运算法则是解题的关键.2、B【分析】根据被开方数大于等于0列式计算即可得解.【详解】由题意得,x+1≥0,解得x≥-1.故答案为:B.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.3、D【分析】由题意根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【详解】解:A、没有分母,所以它是整式,故本选项错误;B、的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误;C、的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误;D、的分母中含有字母,因此它们是分式,故本选项正确;故选:D.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.4、B【分析】根据平面直角坐标系内的点到轴的距离就是横坐标的绝对值,即可得到结果.【详解】解:∵点的横坐标为-4,∴点到轴的距离是4,故选:B.【点睛】本题考查了平面直角坐标系内点的坐标,属于基础题目.5、D【分析】根据几何概率的公式,分别求解出圆形的面积和正方形的面积即可.【详解】由题:,∴,故选:D.【点睛】本题考查几何概率的计算,准确计算各部分面积是解题关键.6、C【解析】根据同底数幂的运算法则,底数不变,指数相加计算即可.【详解】,故选:C.【点睛】考查了同底数幂的运算法则,熟记同底数的运算法则是解题的关键.7、D【分析】本题考察等腰三角形的性质,全等三角形的判定,三角形的外角定理.【详解】解:∵PA=PB,∴∠A=∠B,∵AM=BK,BN=AK,∴ 故选D.点睛:等腰三角形的两个底角相等,根据三角形全等的判定定理得出相等的角,本题的难点是外角的性质定理的利用,也是解题的关键.8、D【分析】根据平方根的定义:如果一个数的平方等于,这个数就叫做的平方根,即可得解.【详解】由题意,得故选:D.【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.9、C【分析】首先比较平均数,平均数相同时,选择方差较小的运动员参加.【详解】∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛.∵丙的方差最小,∴选择丙参赛.故选:C.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、B【解析】∵正比例函数y=kx(k≠0)的图像经过第二、四象限,∴k<0,∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.故选B.11、C【解析】根据轴对称的概念作答:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.【点睛】本题主要考查了轴对称的概念,解题关键是掌握轴对称的概念并能找到对称轴.12、C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.【点睛】此题考查函数的图象,解题关键在于观察图形二、填空题(每题4分,共24分)13、【分析】根据积的乘方的逆运算,把原式变形为指数相同的,然后利用有理数的乘方和乘法法则进行计算即可.【详解】原式,故答案为:.【点睛】本题考查了积的乘方公式,逆用公式是解题的关键,注意负数的奇次方是负数.14、①③④【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.15、1.【解析】试题分析:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=1°.故答案为1.考点:线段垂直平分线的性质.16、3.6×10﹣1.【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.00000036=3.6×10﹣1,考点:科学记数法—表示较小的数17、1【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3。
