
人教版七年级(上)数学 第三章 一元一次方程 单元测试卷(含答案).doc
7页人教版七年级(上)数学 第三章 一元一次方程 单元测试卷一、选择题(每题3分,共30分)1.下列方程中,不是一元一次方程的是( )A.5x+3=3x+7 B.1+2x=3 C.+=3 D.x=-72.如果4x2-2m=7是关于x的一元一次方程,那么m的值是( )A.- B. C.0 D.13.下列方程中,解是x=2的是( )A.3x=x+3 B.-x+3=0 C.2x=6 D.5x-2=84.方程+1=0的解是( )A.x=-10 B.x=-9 C.x=9 D.x=5.下列说法中,正确的是( )A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若|a|=|b|,则a=b6.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是( )A.x=-4 B.x=-3 C.x=-2 D.x=-17.若关于x的一元一次方程ax+b=0(a≠0)的解是正数,则( )A.a,b异号 B.b>0 C.a,b同号 D.a<08.已知方程7x+2=3x-6与x-1=k的解相同,则3k2-1的值为( )A.18 B.20 C.26 D.-269.轮船在静水中的速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.设甲、乙两码头间的距离为x km,则列出的方程正确的是( )A.(20+4)x+(20-4)x=5 B.20x+4x=5C.+=5 D.+=510.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A.180元 B.202.5元C.180元或202.5元 D.180元或200元二、填空题(每题3分,共24分)11.写出一个解是-2的一元一次方程:____________________.12.比a的3倍大5的数等于a的4倍,列方程是 .13.已知关于x的方程x+k=1的解为x=5,则-|k+2|=________.14.当y=________时,1-与的值相等.15.对于两个非零有理数a,b,规定:a⊗b=ab-(a+b).若2⊗(x+1)=1,则x的值为________.16.一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两位数的,则这个两位数是________.17.一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.18.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4 000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4 000元的应缴纳全部稿费的11%的税.今知丁老师获得一笔稿费,并缴纳个人所得税420元,则丁老师的这笔稿费有________元.三、解答题(19题16分,20,21题每题6分,22题8分,其余每题10分,共66分)19.解方程:(1)2x+3=x+5; (2)2(3y-1)-3(2-4y)=9y+10; (3)x+2=8+x; (4)-1=.20.已知y1=-x+1,y2=x-5,且y1+y2=20,求x的值.21.如果方程-8=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求式子a-的值.22.如图,一块长5 cm、宽2 cm的长方形纸板,一块长4 cm、宽1 cm的长方形纸板,与一块正方形以及另两块长方形的纸板,恰好拼成一个大正方形.问:大正方形的面积是多少?23.某人原计划在一定时间内由甲地步行到乙地,他先以4 km/h的速度步行了全程的一半,又搭上了每小时行驶20 km的顺路汽车,所以比原计划需要的时间早到了2 h.甲、乙两地之间的距离是多少千米?24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见下表:每月用水量价格不超出6 t的部分2元/t超出6 t不超出10 t的部分4元/t超出10 t的部分8元/t若某户居民某月份用水8 t,则应收水费:2×6+4×(8-6)=20(元).注:水费按月结算.(1)若该户居民2月份用水12.5 t,则应收水费________元;(2)若该户居民3,4月份共用水15 t(3月份的用水量少于5 t),共交水费44元,则该户居民3,4月份各用水多少吨?25.某校计划购买20张书柜和一批书架,现从A,B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每个70元.A超市的优惠政策为每买一张书柜赠送一个书架,B超市的优惠政策为所有商品打8折出售.设该校购买x(x>20)个书架.(1)若该校到同一家超市选购所有书柜和书架,则到A超市和B超市需分别准备多少元货款?(用含x的式子表示)(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20张书柜和100个书架,且可到两家超市自由选购,你认为至少需准备多少元货款?并说明理由.参考答案一、1.C 2.B 3.D 4.B 5.B 6.B7.A 8.C 9.D 10.C二、11.2x-1=-5(答案不唯一) 12.3a+5=4a 13.-2 14.815.2 16.45 17.10 18.3 800三、19.解:(1)移项,得2x-x=5-3.合并同类项,得x=2.(2)去括号,得6y-2-6+12y=9y+10.移项,得6y+12y-9y=10+2+6.合并同类项,得9y=18.系数化为1,得y=2.(3)去括号,得x+x+2=8+x.去分母,得x+5x+4=16+2x.移项,得x+5x-2x=16-4.合并同类项,得4x=12.系数化为1,得x=3.(4)去分母,得3(3y-1)-12=2(5y-7).去括号,得9y-3-12=10y-14.移项,得9y-10y=3+12-14.合并同类项,得-y=1.系数化为1,得y=-1.20.解:由题意,得+(x-5)=20,解得x=-48.21.解:解-8=-,得x=10.因为方程-8=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,所以把x=10代入方程4x-(3a+1)=6x+2a-1,得4×10-(3a+1)=6×10+2a-1,解得a=-4.所以a-=-4+=-3.22.解:设大正方形的边长为x cm.根据题意,得x-2-1=4+5-x,解得x=6.6×6=36(cm2).答:大正方形的面积是36 cm2.23.解:设甲、乙两地之间距离的一半为s km,则全程为2s km.根据题意,得-=2.解得s=10.所以2s=20.答:甲、乙两地之间的距离是20 km.24.解:(1)48(2)设该户居民3月份用水x t,则4月份用水(15-x)t,其中x<5,15-x>10.根据题意,得2x+2×6+4×4+(15-x-10)×8=44.解得x=4,则15-x=11.答:该户居民3月份用水4 t,4月份用水11 t.25.解:(1)根据题意,到A超市购买需准备货款20×210+70(x-20)=70x+2 800(元),到B超市购买需准备货款0.8(20×210+70x)=56x+3 360(元).(2)由题意,得70x+2 800=56x+3 360,解得x=40.答:当购买40个书架时,无论到哪家超市购买所付货款都一样.(3)因为A超市的优惠政策为买一张书柜赠送一个书架,相当于打7.5折;B超市的优惠政策为所有商品打8折,所以应该到A超市购买20张书柜,赠20个书架,再到B超市购买80个书架.所需货款为20×210+70×80×0.8=8 680(元).答:至少需准备8 680元货款.。
