好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2025学年潮州市重点中学高三下学期期末质量检测试题数学试题.doc

20页
  • 卖家[上传人]:象****善
  • 文档编号:593870332
  • 上传时间:2024-10-11
  • 文档格式:DOC
  • 文档大小:1.66MB
  • / 20 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2025学年潮州市重点中学高三下学期期末质量检测试题数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.下列函数中,图象关于轴对称的为( )A. B.,C. D.2.执行如图所示的程序框图,当输出的时,则输入的的值为( )A.-2 B.-1 C. D.3.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有( )A.36种 B.44种 C.48种 D.54种4.函数的图象大致为( )A. B.C. D.5.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ). A.6500元 B.7000元 C.7500元 D.8000元6.已知函数是定义域为的偶函数,且满足,当时,,则函数在区间上零点的个数为( )A.9 B.10 C.18 D.207.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )A. B. C. D.28.已知整数满足,记点的坐标为,则点满足的概率为( )A. B. C. D.9.已知平面向量,满足,且,则与的夹角为( )A. B. C. D.10.已知向量与向量平行,,且,则( )A. B.C. D.11.已知,则( )A.2 B. C. D.312.若复数满足,则(  )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

      13.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.14.已知随机变量服从正态分布,,则__________.15.关于函数有下列四个命题:①函数在上是增函数;②函数的图象关于中心对称;③不存在斜率小于且与函数的图象相切的直线;④函数的导函数不存在极小值.其中正确的命题有______.(写出所有正确命题的序号)16.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:①当时,存在实数m,使函数恰有5个不同的零点;②若,函数的零点不超过4个,则;③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是_______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)求函数的最大值.18.(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.19.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.21.(12分)已知椭圆()经过点,离心率为,、、为椭圆上不同的三点,且满足,为坐标原点.(1)若直线、的斜率都存在,求证:为定值;(2)求的取值范围.22.(10分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1、D【解析】图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性. 判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数 (2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.2、B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;综上选B.3、B【解析】分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有; 如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.4、A【解析】根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.5、D【解析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.6、B【解析】由已知可得函数f(x)的周期与对称轴,函数F(x)=f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,作出函数f(x)与g(x)的图象如图,数形结合即可得到答案.【详解】函数F(x)=f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,由f(x)=f (2﹣x),得函数f(x)图象关于x=1对称,∵f(x)为偶函数,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函数周期为2.又∵当x∈[0,1]时,f(x)=x,且f(x)为偶函数,∴当x∈[﹣1,0]时,f(x)=﹣x,g(x),作出函数f(x)与g(x)的图象如图:由图可知,两函数图象共10个交点,即函数F(x)=f(x)在区间上零点的个数为10.故选:B.【点睛】本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.7、A【解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.8、D【解析】列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.9、C【解析】根据, 两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且, 所以,所以,所以 ,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.10、B【解析】设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.11、A【解析】利用分段函数的性质逐步求解即可得答案.【详解】,;;故选:.【点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.12、C【解析】把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.二、填空题:本题共4小题,每小题5分,共20分。

      13、【解析】由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.14、0.22.【解析】正态曲线关于x=μ对称,根据对称性以及概率和为1求解即可详解】【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题.15、①②③【解析】由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.【详解】函数的定义域是,由于,在上递增,∴函数在上是递增,①正确;,∴函数的图象关于中心对称,②正确;,时取等号,∴③正确;,设,则,显然是即的极小值点,④错误.故答案为:①②③.【点睛】本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.16、①②③【解析】根据偶函数的图象关于轴对称,利用已知中的条件作出偶函数的图象,利用图象对各个选项进行判断即可.。

      点击阅读更多内容
      相关文档
      2025届湖北省新八校协作体高三下学期10月联考-化学试题(含答案).docx 2025届河南省青桐鸣高三下学期10月大联考-历史试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-语文试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-生物试题(含答案).docx 2025届八省联考教研联盟高三下学期演练统一监测考-语文试卷(含答案).docx 2025届河南省青桐鸣高三下学期10月大联考-地理试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-政治试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-物理试题(含答案).docx 2025届河南省高三上学期联考(二)-语文试题(含答案).docx 2025届河南省高三上学期联考(二)-生物试题(含答案).docx 2025届广东省联考高三上学期10月月考-历史试题(含答案).docx 2025届八省联考教研联盟高三下学期演练统一监测考-物理试卷(含答案).docx 2025届河南省高三上学期联考(二)-物理试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-数学试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-政治试题(含答案).docx 2025届河南省高三上学期联考(二)-政治试题(含答案).docx 湖北省腾云联盟2024-2025学年高三上学期8月联考数学试卷(含答案).docx 2025届河南省创新发展联盟高三下学期9月联考-化学试题(含答案).docx 2025届云南省大理民族中学高三上学期开学考-地理试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-英语试题(含答案).docx
      猜您喜欢
      2025学年苏州大学高考第二次模拟考试数学试题文试题.doc 2025学年贵州省贵阳市第三十八中学下学期高17级一部高三数学试题一模模拟(五)试题.doc 2025学年辽宁省大连市旅顺口区第三高级中学第二学期期末教学质量检测试题考试高三生物试题含解析.doc 2025学年湖南省永州市双牌县第二中学高三二模考前数学试题综合练习一含附加题.doc 2025学年辽宁省抚顺市省重点高中协作校高三第九次月考数学试题.doc 2025学年贵州省黔东南州天柱二中全国卷Ⅰ数学试题高考模拟题.doc 2025学年辽宁省大连经济技术开发区得胜高级中学高三第十次考试英语试题含解析.doc 2025学年贵州省铜仁市乌江学校高中高三下学期第二次诊断性测验物理试题.doc 2025学年福建省泉港六中高三一模生物试题(海淀一模)试卷含解析.doc 2025学年甘肃省定西市渭源县高三4月调研测试数学试题试卷.doc 2025学年福建省漳州市八校高三5月联合模拟考试生物试题试卷含解析.doc 2025学年重庆市第二外国语学校高三暑假第二次阶段性测试生物试题试卷含解析.doc 2025学年湖南省湘南高三语文试题第一次模拟考试试题含解析.doc 2025学年贵州省贵阳市示范名校高三年级4月联考物理试题.doc 2025学年湖南省长望浏宁四县市高三语文试题下学期一模考试试题含解析.doc 2025学年贵州省安顺市普通高中高三一调考试物理试题.doc 2025学年辽宁朝阳市普通高中高三调研语文试题试卷详细解析含解析.doc 2025学年辽宁省大连瓦房店市第六高级中学第二学期高三年级模拟考试生物试题试卷含解析.doc 2025学年贵州省六盘水市高三毕业班第一次模拟考试数学试题.doc 2025学年辽宁省沈阳市城郊市重点联合体下学期高17级一部高三物理试题一模模拟(五)试题.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.