
气固两相流静电相关测速参数选取方法李良.pdf
5页»60 »3ù Ä ý Ð Vol.60 No.32009M3 CIESC Journal M arch 2009ùîe%M@áÈM1©ÎÊ|ZE李 良1,2, 王 超1, 张文彪1, 闫 勇3(1?ÃgVñ_©Ð eÅ×ÄLi,?ÃvÐÈÐ1îÄýñÐý,?Ã300072;2¢ÜÈ0ýñÐn,2¢Ü450007;3 Department of Electronics, University of Kent, Canterbury, Kent C T2 7NT, UK)1oM:áÈM1©Î;%M@;"Ôq;sHW;LÜûÏms Ë|:TP 212.1 ÓDSM:AÓcI|:0438-1157(2009)03-0615-05Parameter selection method of elect rostatic correlationvelocimetry for gas-solids flowLI Liang1,2, WANG Chao1 , ZH ANG Wenbiao1, YAN Yong3(1 Tianjin Key Laboratory of Process Measurement and Control, Schoolof Electrical Engineering &Automation,Tianjin University , Tianjin 300072, China;2 Zhengzhou Electronic &Information Engineering School,Zhengzhou 450007, Henan, China;3 Department of Electronics, University of Kent,Canterbury, Kent CT2 7N T, UK)Abstract:Aimed at the lack of systematic parameter selection reference in the electrostatic correlationbased velocity measurement, the principle and steps in choosing the sampling frequency and integral timewere established, w hich took the analysis in the m easurement error of transit time and the real applicationrequirement into account.Besides, an experim ent platform w as built by using the real sensor and virtualinstrument softw are.U sing this platform, the principle in selecting the parameters in the electrostaticcorrelation based velocity measurem ent w as proven.Key w ords:electrostatic correlation velocimetry;gas-solids flow ;sampling frequency ;integral time;experiment platform2008-08-12là, 2008-11-11l©¿à。
ó"¦:¦Ñ»BT: Ù(1972—),3,«VÁ[":?Ãg1 SÐÁ[" ýÈ ïÊ,¿?È^?È¥BÕö1ZT,ÍM ,yÈ ï³p¥$ 9F,¿M¥C`°mø×£ÈQV^ L¿[Á3£?¥ö1!!,QVBQ5Ï¿x¥Î°¤YQV ,^Vñ¥×1,LCÎ¥L©, Ø¥、¤®¥NO xbµ×1T¨QVBQ5Ï¿x¥©¿Received date:2008-08-12.Corresponding author:Prof.WANG Chao.E - mail:w angchao@M%M@©Ù5,^S=ª¥45"-,áS¥ÈÌÏ,¨5¡Ï½Pitot5©Î¥ZEÉwØ,^BÕW¤©ZE,P¨VñÏi^、å?¤xΩÙ5。
áÈ.Ë µ2ùÚ、ýT V Lî'®©ªÄ,ÐM1/¥²¹%M@@Ω4³ %ZÃ1984M, Mathur©[1]»BQ4P¨áÈ.˲ºM1/©5¡Ï¥%8@Î"-S=ÌEûXÜ 7?Îð,"ÔqA¶v¿|KÚÔq¥2 InáÈ.Ë¥ bWror,.Ë{¥Û@î.2|{ zB V¨T(3)VUB=vm/W (3)L=|{ z"Ð bWrorµ1,ÎÐ (¥ R ìs R ìj[#Mµ1,L=¥|{ z V[¿¹T(4)¥TB=Kb vm/W (4)Ï, K b^1 è", VYVL©çYan©[9]YVLùî¤Ï@f /, Kb =0.05~ 0.07。
yN,ô "ç Ø,"Ôq¹f s1≥2B3M1Ï,®¿ÜV"¤¥^ò ÖÛHWÄ¥©´,yNM1Ø9º?ô ÖÛHWÄM1f¥Kv´9 HW,7L=¥´ V?i ÖÛHWÄ,yN{ 9µLç"Ûù¹Δt,M1f´ÊÂτ0 ≈nΔtτ0Ðz)¿nΔtÐn+1 ΔtWH,´ÊÂ9Á3¥Kvµ¹±12Δt¥ HWMµ¹Δττ=±12 ΔtnΔt =±12n (5)M1f´ÊÂ,' HW¹ç´H,"Ôq Ú,"Ûùü l, n´| v,ôT(5), HW¥Mµü lL=©Ïn¥vl| %¿ HW¥vl©VñÏKvMµCKl HW,'©@ÎK´H。
yN,!9H£ç9¥Kv@Ω´vmax/ HW¥MµÑV¸´(δ),'Δττvma x =12nvmax ≤±δ (6)Ï, τvmax¹KvÎH¥ HW;nvmax¹KvÎH¥"Ûù, nvmax ≈ LvmaxΔtyNΔt≤ 2δL100vmax ,'"Ôqf s2¹fs2 ≥100vmax2δL (7)yN,"Ôqf¥Ê|8 In[·616·Ä ý Ð »60 ñyÍ¥Y,|[ñ"Ôq¥Kv´,'f ≥max(f s1,fs2) (8)1.2 sHW¥Ê|ð5sHWöM1زTÁ3Y,L=Ï¥sHW V?¹íKv,yNÇ?¤M1Ø¥9´R xyR xy = 1T∫T0y(t)x(t-τ)dt (9)¹¤O×ç¥M19زT,ô M1 Ø[ 5,7,14] ,Hq¹T≥10 τ。
M19Ø1p¥Ä ,BQM1Øî³HW É,V7Y"d¥LH,iq?4÷Ú¥1pM1 ØsHW¥1pM1 N Y,L=¨VñÏ, Vô L=f ,InsHW HW9Ø×ç¥Y,sHWÉ ØÊ| HW¥Sʵ VQ HW´9Ø¥×ç[ 5,7] ,ÂT(10)îUσ(τ0)≈ 38π2 TB3 1ρ2m-11/2(10)®T(10) V© HW¥Sʵö1Ð|{ zB、sHWTM1"ρmµ1]"Hq/,M1"ρmö1 VYV.Ë|Ø ØÈ^!94ÚsHWT |{ zB N, HW¥Sʵü v,Ï|{zB HWSʵ¥Y÷¹üA,î[ö1 In{ z HWSʵ¥Y,{zKl¥f /,ç¡@1p¥sHW。
ô T(3) V[ A, R ìÎ y{ z z,yNsHW¥Ê|,1[K®Î('{ zBKl)H¡@1p¹º1K®ÎHsHW¡@1p,ñÎS¶=üû?¡@1pyN, VYVL4³©Î/KH©´Sʵ¥MÄt]çsHW2 M1Ê|¥Ls2.1 ¿´EN¥áÈM1LÜû¹M1"d¥Ê|ÉLs,'Óy ë¿´E。
