好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

]新人教版九年级上册第24章圆的复习课件.ppt

33页
  • 卖家[上传人]:夏**
  • 文档编号:588128664
  • 上传时间:2024-09-07
  • 文档格式:PPT
  • 文档大小:646KB
  • / 33 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • --圆、与圆有关的位置关系(--圆、与圆有关的位置关系(1))9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 圆的相关概念(圆的相关概念(略略))9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 一、一、垂径定理垂径定理●OABCDM└└③③AM=BM,重视:重视:模型模型““垂径定理直角三角形垂径定理直角三角形”” 若若 ①① CD是直径是直径②② CD⊥⊥AB可推得可推得⌒⌒ ⌒⌒④④AC=BC,⌒⌒⌒⌒⑤⑤AD=BD.    1.1.定理定理 垂直于弦的直径垂直于弦的直径平分弦平分弦, ,并且平分并且平分弦所的两条弧弦所的两条弧. .9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 2 2、垂径定理的逆定理、垂径定理的逆定理②②CD⊥⊥AB,n由由 ①① CD是是直直径径③③ AM=BM可推得可推得⌒⌒ ⌒⌒④④AC=BC,⌒⌒⌒⌒⑤⑤AD=BD.●OCD● MAB┗  平分弦(  平分弦(不是直径不是直径)的直径垂直于弦)的直径垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.9/7/2024欢迎046班的同学们!注意听课,积极思考呵! (1)直径直径 (过圆心的线过圆心的线);;(2)垂直弦;垂直弦; (2)(3) 平分弦平分弦 ;    ;    (4)平分劣弧;平分劣弧;(3)(5)平分优弧平分优弧.知二得三知二得三注意注意: “ 直径平分弦则垂直弦直径平分弦则垂直弦.” 这句话对吗这句话对吗?( )错错●OABCDM└└9/7/2024欢迎046班的同学们!注意听课,积极思考呵! ●OABCD1.两条弦在圆心的同侧两条弦在圆心的同侧●OABCD2.两条弦在圆心的两侧两条弦在圆心的两侧例例⊙⊙O O的半径为的半径为10cm10cm,弦,弦AB∥CDAB∥CD,, AB=16AB=16,,CD=12CD=12,,则则ABAB、、CDCD间的间的 距离是距离是___ ___ . .2cm或或14cm9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 在在同圆同圆或或等圆等圆中中, ,如果如果①①两个圆心角两个圆心角, ,②②两两条弧条弧, ,③③两条弦两条弦, ,④④两条弦心距两条弦心距中中, ,有一组量相有一组量相等等, ,那么它们所对应的其余各组量都分别相等那么它们所对应的其余各组量都分别相等. .●OAB┓DA′B′D′┏┏如由条件如由条件:②②AB=A′B′⌒⌒  ⌒⌒③③AB=A′B′④④ OD=O′D′可推出①∠①∠AOB=∠∠A′O′B′二、圆心角、弧、弦、弦心距的关系二、圆心角、弧、弦、弦心距的关系9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 三、圆周三、圆周角定理及推论角定理及推论 9090°°的圆周角所对的弦是的圆周角所对的弦是 . .●OABC●OBACDE●OABC 定理定理: : 在同圆或等圆中在同圆或等圆中, ,同弧或等弧同弧或等弧所对的圆周角所对的圆周角相等相等, ,都等于这弧都等于这弧所对的所对的圆心角的一半圆心角的一半. . 推论推论: :直径所对的圆周角是直径所对的圆周角是 . .直角直角直径直径判断判断: (1) 相等的圆心角所对的弧相等相等的圆心角所对的弧相等. (2)相等的圆周角所对的弧相等相等的圆周角所对的弧相等. (3) 等弧所对的圆周角相等等弧所对的圆周角相等.(×)(×)(√)9/7/2024欢迎046班的同学们!注意听课,积极思考呵!   1、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为60°,OD⊥BC,D为垂足,且OD=10,则AB=_____,BC=_____;  2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与CD之间的关系为( ); A.AB=2CD B.AB<2CD C.AB>2CD D.不能确定  3、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,那么∠BOC等于 ( ); A.150° B.130° C.120° D.60°  4、在△ABC中,∠A=70°,若O为△ABC的外心,∠BOC=  ;若O为△ABC的内心,∠BOC=  .            图1             图29/7/2024欢迎046班的同学们!注意听课,积极思考呵! 1、两个同心圆的直径分别为5 cm和3 cm,则圆环部分的宽度为_____ cm;   2、如图1,已知⊙O,AB为直径,AB⊥CD,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来 ;  3、为改善市区人民生活环境,市建设污水管网工程,某圆柱型水管的直径为100 cm,截面如图2,若管内污水的面宽AB=60 cm,则污水的最大深度为 cm;   4、已知、是同圆的两段弧,且=2,则弦AB与CD之间的关系为( ).A.AB=2CD;B.AB<2CD;C.AB>2CD;D.不能确定           图1         图2 .p.or.o.p.o.p四、点和圆的位置关系四、点和圆的位置关系Op<<r 点点p在在⊙ ⊙o内内Op=r 点点p在在⊙ ⊙o上上Op>>r 点点p在在⊙ ⊙o外外9/7/2024欢迎046班的同学们!注意听课,积极思考呵!     不在同一直线上的三个点确定一个圆          不在同一直线上的三个点确定一个圆          ((这个三角形叫做圆的这个三角形叫做圆的内接内接三角形,这个圆叫做三角三角形,这个圆叫做三角形的形的外接外接圆,圆心叫做三角形的圆,圆心叫做三角形的外心外心))        圆内接四边形的性质:圆内接四边形的性质:((1))对角互补;对角互补;((2))任意一个外角都等于它的内任意一个外角都等于它的内对角对角  反证法的三个步骤:  反证法的三个步骤:1、提出假设、提出假设2、由题设出发,引出矛盾、由题设出发,引出矛盾3、由矛盾判定假设不成立,肯定结论正确、由矛盾判定假设不成立,肯定结论正确9/7/2024欢迎046班的同学们!注意听课,积极思考呵!     1、、⊙ ⊙O的半径为的半径为R,圆心到点,圆心到点A的距离为的距离为d,且,且R、、d分别分别是方程是方程x2--6x++8==0的两根,则点的两根,则点A与与⊙ ⊙O的位置关系是(的位置关系是( ))A.点.点A在在⊙ ⊙O内部内部 B.点.点A在在⊙ ⊙O上上C.点.点A在在⊙ ⊙O外部外部 D.点.点A不在不在⊙ ⊙O上上    2、、M是是⊙ ⊙O内一点,已知过点内一点,已知过点M的的⊙ ⊙O最长的弦为最长的弦为10 cm,最短的弦长为,最短的弦长为8 cm,则,则OM=_____ cm.    3、圆内接四边形、圆内接四边形ABCD中,中,∠∠A∶∠∶∠B∶∠∶∠C∶∠∶∠D可以是可以是(( ))    A、、1∶ ∶2∶ ∶3∶ ∶4          B、、1∶ ∶3∶ ∶2∶ ∶4     C、、4∶ ∶2∶ ∶3∶ ∶1          D、、4∶ ∶2∶ ∶1∶ ∶39/7/2024欢迎046班的同学们!注意听课,积极思考呵! 练:有两个同心圆,半径分别为练:有两个同心圆,半径分别为RR和和r,,P是圆环内一点,则P是圆环内一点,则OPOP的取值的取值范围是_____范围是_____.r9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 切线的判定定理切线的判定定理•定理定理 经过半径的外端经过半径的外端, ,并且垂直于这条半径的并且垂直于这条半径的直线是圆的切线直线是圆的切线. .CD●OA 如图 如图  ∵∵OAOA是是⊙⊙O O的的半径半径, , 且且CD⊥OACD⊥OA, ,∴ ∴ CDCD是是⊙⊙O O的切线的切线. .9/7/2024欢迎046班的同学们!注意听课,积极思考呵! (1)定义(1)定义(2)圆心到直线的距离(2)圆心到直线的距离d=圆的半径=圆的半径r(3)(3)切线的判定定理:切线的判定定理:经过半径的外端经过半径的外端,并且垂直于这条半径的直线是圆的切线并且垂直于这条半径的直线是圆的切线.9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 切线的判定定理的两种应用切线的判定定理的两种应用  1、如果已知直线与圆有交点,往往、如果已知直线与圆有交点,往往要要作出过这一点的半径作出过这一点的半径,,再证明直线垂直再证明直线垂直于这条半径即可;于这条半径即可;    2、如果不明确直线与圆的交点,往往、如果不明确直线与圆的交点,往往要要作出圆心到直线的垂线段作出圆心到直线的垂线段,,再证明这条再证明这条垂线段等于半径即可.垂线段等于半径即可.9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 切线的性质定理切线的性质定理圆的切线垂直于圆的切线垂直于过切点的半径过切点的半径. .    ∵∵CDCD切切⊙⊙O O于A于A, OA, OA是是⊙⊙O O的半的半径径CD●OA∴∴CD⊥⊥OA.9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 切线的性质定理出可理解为切线的性质定理出可理解为    如果一条直线满足以下三个性质中的如果一条直线满足以下三个性质中的任意两个任意两个,那么,那么第三个也成立。

      第三个也成立①①经过切点、经过切点、②②垂直于切线、垂直于切线、③③经过圆心经过圆心如  如  ①①      ②②③③①①③③②②②②③③①①任意两个任意两个9/7/2024欢迎046班的同学们!注意听课,积极思考呵!   1、两个同心圆的半径分别为3 cm和4 cm,大圆的弦BC与小圆相切,则BC=_____ cm;  2、如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为_____;  3、下列四个命题中正确的是( ).①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的半径的直线是该圆的切线 ; ③到圆心的距离等于半径的直线是该圆的切线 ;④过圆直径的端点,垂直于此直径的直线是该圆的切线.A.①② B.②③ C.③④ D.①④9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 一一、判断1、三角形的外心到三角形各边的距离相等; ( )2、直角三角形的外心是斜边的中点. ( )二、填空:1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆 半径    ,内切圆半径    ;2、等边三角形外接圆半径与内切圆半径之比    .三、选择题:下列命题正确的是( )A、三角形外心到三边距离相等B、三角形的内心不一定在三角形的内部C、等边三角形的内心、外心重合D、三角形一定有一个外切圆× ×√ √6.5cm6.5cm2cm2cm2:12:1C C四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三角形的面积为______.30cm9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 交点个数交点个数 名称名称0外离外离1外切外切2相交相交1内切内切0内含内含同心圆是内含的特殊情况同心圆是内含的特殊情况d , R , r 的关系的关系dR rd > R + rd = R + rR-r< d < R+ rd = R - rd < R - r六六.圆与圆的位置关系圆与圆的位置关系 A AB BC CO O七七七七. .三角形的外接圆和内切圆:三角形的外接圆和内切圆:三角形的外接圆和内切圆:三角形的外接圆和内切圆:A AB BC CI I三角形内切圆的圆心叫三角形的三角形内切圆的圆心叫三角形的三角形内切圆的圆心叫三角形的三角形内切圆的圆心叫三角形的内心内心内心内心。

      三角形外接圆的圆心叫三角形的三角形外接圆的圆心叫三角形的三角形外接圆的圆心叫三角形的三角形外接圆的圆心叫三角形的外心外心外心外心实质实质性质性质三角形的外心三角形的外心三角形的内心三角形的内心三角形三边垂直平分线的交点三角形三边垂直平分线的交点三角形三内角角平分线的交点三角形三内角角平分线的交点到三角形各边的到三角形各边的距离相等距离相等到三角形各顶点到三角形各顶点的距离相等的距离相等 锐角三角形的外心位于三角形锐角三角形的外心位于三角形内内, ,直角三角形的外心位于直角三角形直角三角形的外心位于直角三角形斜边中点斜边中点, ,钝角三角形的外心位于三角形钝角三角形的外心位于三角形外外. .ABC●OABCCAB┐●O●O三角形的外心三角形的外心是否一定在三角形的内部?是否一定在三角形的内部?9/7/2024欢迎046班的同学们!注意听课,积极思考呵! n从圆外一点向圆所引的两条切线长从圆外一点向圆所引的两条切线长相等相等; ;并且这一点和圆心的连线平分并且这一点和圆心的连线平分两条切线的夹角两条切线的夹角. .ABP●O┗┏12ABC●┗┏┓ODEF┗●ABC●O●┗┓ODEF┗切线长定理及其推论切线长定理及其推论:n直角三角形的内切圆直角三角形的内切圆半径与三边关系半径与三边关系.n三角形的内切圆半径与圆面积三角形的内切圆半径与圆面积.∵∵PA,PB切切⊙ ⊙O于于A,B ∴∴PA=PB ∠∠1=∠∠2 •1.如图:圆如图:圆O中弦中弦AB等于半径等于半径R,则这条弦所对的,则这条弦所对的圆心角是___圆心角是___,圆周角是______圆周角是______.60度度30或或150度度9/7/2024欢迎046班的同学们!注意听课,积极思考呵!   2:已知:已知ABC三点在圆三点在圆O上,连接上,连接ABCO,,如果如果∠∠ AOC=140 °,求,求∠∠ B的度数.的度数.  3.平面上一点平面上一点P到圆到圆O上一点的距离最长为上一点的距离最长为6cm,最短为最短为2cm,则圆则圆O的半径为的半径为_______.D    解:在优弧AC上定一点D,连结AD、CD. ∵ ∠ AOC=140 ° ∴ ∠ D=70 °∴ ∠ B=180 ° -70 ° =110 °2或或4cm9/7/2024欢迎046班的同学们!注意听课,积极思考呵!     4.4.怎样要将一个如图所示的怎样要将一个如图所示的破镜破镜重圆重圆??9/7/2024欢迎046班的同学们!注意听课,积极思考呵! ABCP    5、、 如图,如图,AB是是⊙ ⊙O的任意一条弦,的任意一条弦,OC⊥⊥AB,,垂垂足为足为P,若,若 CP=7cm,,AB=28cm ,,你能帮老师求出这你能帮老师求出这面镜子的半径吗?面镜子的半径吗?O714综合应用垂径定理和勾股定理可求得半径综合应用垂径定理和勾股定理可求得半径9/7/2024欢迎046班的同学们!注意听课,积极思考呵!     6.如图:如图:AB是圆是圆O的直径,的直径,BD是圆是圆O的弦,的弦,BD到到C,,AC=AB,,BD与与CD的大小有什么关系?的大小有什么关系?为什么?为什么?  补充:补充:  若∠B=70 °,则∠DOE=___.E40 °9/7/2024欢迎046班的同学们!注意听课,积极思考呵!     7、如图、如图,AB是圆是圆O的直径的直径,圆圆O过过AC的中点的中点D,DE⊥⊥BC于于E..  证明  证明:DE是圆是圆O的切线的切线.ABCDEO.9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 谢谢同们的合作谢谢同们的合作拜 拜拜 拜9/7/2024欢迎046班的同学们!注意听课,积极思考呵! 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.