好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

奶制品的生产和销售模型.doc

10页
  • 卖家[上传人]:cl****1
  • 文档编号:383031167
  • 上传时间:2023-02-17
  • 文档格式:DOC
  • 文档大小:109KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 数学建模作业奶制品的生产与销售模型奶制品的生产与销售模型摘 要随着社会的发展,人们的生活水平逐渐提高,对奶制品的要求也不断提高,因此,企业生产越来越注重对人们需求的供给,合理分配资源,获取最大利润根据本题的基本信息,提出奶制品的生产与销售模型,这个优化问题的目标时使每天的获利最大,要作的决策时生产计划,即每天用多少桶牛奶生产A1,用多少桶牛奶生产A2(也可以时每天生产多少公斤A1,多少公斤A2),但存在着几个问题的制约,采用最小二乘的模型求解方法,按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,就可得到模型最优解,解决实际问题,使资源分配合理,并利用效益最大化关键字:生产要求最优解 最小二乘法 一 问题重述问题一 一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元,每公斤A2获利16元现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。

      试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?问题二 为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1公斤A1加工成0.8公斤高级奶制品B1,也可将1公斤A2加工成0.75公斤高级奶制品B2,每公斤B1能获利44元,每公斤B2能获利32元试为该厂制订一个生产销售计划,是每天的净利润最大,并讨论以下问题:1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1小时劳动时间,应否作这些投资?若每天投资150元,可赚回多少?2)每公斤高级奶制品B1,B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每公斤B1的获利下降10%,计划应该变化吗?二 问题分析问题一 这个优化问题的目标时使每天的获利最大,要作的决策时生产计划,即每天用多少桶牛奶生产A1,用多少桶牛奶生产A2(也可以时每天生产多少公斤A1,多少公斤A2),决策受到3个条件的限制:原料(牛奶)供应、劳动时间、甲类设备的加工能力。

      按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,就可得到下面的模型问题二 要求制订生产销售计划,决策变量可以像例1那样,取作每天用多少桶牛奶生产A1、A2,再添上用多少公斤A1加工B1,用多少斤A2加工B2,但是由于问题要分析B1、B2的获利对生产销售计划的影响,所以决策变量取作A1,A2,B1,B2每天的销售量更方便目标函数是工厂每天的净利润————A1、A2、B1、B2的获利之和扣除深加工费用约束条件基本不变,只是要添上A1,A2深加工时间的约束再与例1类似的假定下用线性规划模型解决这个问题三 基本假设1. A1,A2两种奶制品每公斤的获利是与他们各自产量无关的常数,每桶牛奶加工出A1,A2的数量和所需的时间是与它们各自的产量无关的常数;2. A1,A2每公斤的获利是与它们相互间产量无关的常数,每桶牛奶加工出A1,A2的数量和所需的时间是与他们相互间产量无关的常数;3. 加工A1,A2的牛奶的桶数可以是任意实数四 模型的变量与符号说明 问题一符号符号说明X1每天用来生产A1的牛奶桶数X2每天用来生产A2的牛奶桶数z每天的获利问题二符号符号说明X1每天销售A1的公斤数X2每天销售A2的公斤数X3X4X5X6z每天销售B1的公斤数每天销售B2的公斤数每天用A1加工B1的A1公斤数每天用A2加工B2的A2公斤数每天的净利润五 模型的建立与求解5.1模型的建立与求解问题一 由上述问题分析可建立加工奶制品的生产计划的模型并进行求解:设每天用x1桶牛奶生产A1,用x2桶牛奶生产A2;每天获利为z元.x1桶牛奶可生产3x1公斤A1,获利24*3x1,x2桶牛奶可生产4x2公斤A2,获利16*4x2,z=72x1+64x2;我们的目标是求出当x1,x2满足下列约束条件时z的最大值,及相应的x1,x2的取值。

      约束条件为:1.原料供应:生产A1,A2的总加工时间不得超过每天正式工人总的劳动时间,即12x1+8x2<=480小时;2.劳动时间:生产A1,A2的原料(牛奶)总量不得超过每天的供应,即x1+x2<=50桶;3.设备能力:A1的产量不得超过甲类设备每天的加工能力,即3x<=100;4.非负约束:x1,x2均不能为负值,即x1>=0,x2>=0.由此得基本模型:Max z=72x1+64x2S.t.x1+x2<=50 12x1+8x2<=480 3x1<=100 x1>=0,x2>=0.用LINDO软件求解,可得到如下输出:LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 3360.000 VARIABLE VALUE REDUCED COST X1 20.000000 0.000000 X2 30.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 48.000000 3) 0.000000 2.000000 4) 40.000000 0.000000 NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 72.000000 24.000000 8.000000 X2 64.000000 8.000000 16.000000 RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 50.000000 10.000000 6.666667 3 480.000000 53.333332 80.000000 4 100.000000 INFINITY 40.000000 上面结果的第3,5,6行明确地告诉我们,这个现行规划的最优解为x1=20,x2=30,最优值为z=3360,即用20桶牛奶生产A1,30桶牛奶生产A2,可获最大利润3360元。

      问题二 由上述问题分析可建立奶制品生产销售计划的模型并进行求解:设每天销售公斤,公斤,公斤,公斤,用公斤加工,公斤加工设:其中z表示的是每天净利润,我们的目标是求出当x1,x2,x3,x4,x5,x6满足下列约束条件时z的最大值,及相应的x1,x2,x3,x4,x5,x6的取值约束条件为:1. 原料供应:A1每天生产x1+x5公斤,用牛奶(x1+x5)/3桶,A2每天生产x2+x6公斤,用牛奶(x2+x6)/4桶,二者之和不得超过每天的供应量50桶;即2. 劳动时间:每天生产A1,A2的时间分别为4(x1+x5)和2(x2+x6),加工B1,B2的时间分别为2x5和2x6,二者之和不得超过总的劳动时间480小时;即3. 设备能力:A1的产量x1+x5不得超过甲类设备每天的加工能力100公斤;即4. 非负约束:x1,x2,……,x6均为非负.即5. 附加约束:1公斤A1加工成0.8公斤B1,故x3=0.8x5,类似地x4=0.75x6.即由此得基本模型:Max s.t.用LINDO软件求解,可得到如下输出:LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 3460.800 VARIABLE VALUE REDUCED COST X1 0.000000 1.680000 X2 168.000000 0.000000 X3 19.200001 0.000000 X4 0.000000 0.000000 X5 24.000000 0.000000 X6 0.000000 1.520000 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 3.160000 3) 0.000000 3.260000 4) 76.000000 0.000000 5) 0.000000 44.000000 6) 0.000000 32.000000 NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 24.000000 1.680000。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.