好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

利用函数性质判定方程解的存在.doc

5页
  • 卖家[上传人]:hs****ma
  • 文档编号:533924901
  • 上传时间:2023-03-20
  • 文档格式:DOC
  • 文档大小:140.50KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 教学设计《利用函数性质判定方程解的存在》高竹一、教学内容分析此节内容为北师大版本必修1的第四章《函数应用》第一课时4.1.1利用函数性质判定方程解的存在函数是高中的起始课程,函数的重要性有两方面,一是函数的思想价值,二是函数应用的价值本节内容就是函数应用价值的体现,利用函数和其他数学知识的有机联系,从函数特征判定方程解的存在性二、学生情况分析学生已学习了函数的图像和性质,因此本节内容从学生熟悉的二次函数入手,研究学习判定方程解存在的方法这样,从特殊到一般的学习方法,学生容易掌握理解三、设计思想让学生感识常见的数学思想中体现出的数学乐趣,学会从特殊到一般的归纳、总结的过程四、教学方法启发诱导五、教具多媒体课件六、教学目标1. 让学生明确“方程的解”与“函数的零点”之间的密切关系,掌握利用函数图像性质判断方程解的存在性2. 通过本节学习让学生感识“数形结合”,“特殊到一般”的数学思想3. 本节内容的学习,进一步拓展了学生的视野,使他们体会到数学当中不同内容之间的内在联系七、教学重点难点1. 重点:零点的理解;利用函数性质判定方程解的存在性2. 难点:数形结合思想的合理应用八、教学过程设计1. 导入:观察函数 的图像(利用多媒体展示下图)师:引导学生观察分析此时,f(-2)>0,f(1)<0,f(4)>0.则f(-2)f(1)<0, 那么方程 在(-2,1)内有解。

      同理,f(1)f(4)<0, 方程 在(1,4)内有解分析:2.讲授新知识: 师:引导学生归纳零点定义 一般的,对于函数y=f(x),我们把使f(x)=0的实数x叫作方程的零点 注:零点是一个实数 师(提问):怎样判断函数有零点? 归纳总结:若函数y=f(x)满足以下条件:(1)f(x1)f(x2)<0;(2)函数y=f(x)的图像在[x1,x2]上连续;则方程f(x)=0在(x1,x2)上有解.注:①满足以上两个条件则函数就有零点,两条件必须同时满足 例如:,f(-1)f(2)<0,可方程无解,因为函数图象不连续 ②函数有零点则方程一定有解 学:判断函数是否有零点,方程是否有解讨论结果,代表发言)③此方法只能判定有解,而不能判定解的个数 ④以上条件若不成立,不能说明方程无解 ⑤函数图像若在此区间内单调且有零点,则方程在此区间内只有一解以上五个结论利用多媒体展示完成)小结: 函数图像从x轴上方到下方或从x轴下方到上方都会穿过 x 轴,即图像连续且 有使函数值为零的点的横坐标,那么对应方程一定有解。

      可利用函数值判定方程根的存在 ③以上条件若不成立,不能判定方程无解 例如:x2=0有解,可f(-1)f(1)=(-1)2×12=1+1=2>0 ④只能判定有解而不能判定解的个数 ⑤若函数图象在此区间内单调且有零点,则方程在此区间内有且只有一个解 (以上结论用多媒体展示推导过程)3.例题讲解:例1 判定方程x3+2x+1=0在[-2,3]上是否有解学:独立完成此题师:板书解题过程分析:利用上述结论解:因为f(-2)=(-2)3+2×(-2)+1=-11<0 f(3)=33+2×3+1=34>0 则 f(-2)f(3)<0 又因为函数f(x)=x3+2x+1的图像在[-2,3]上连续, 所以,方程x3+2x+1=0在[-2,3]上有解小结: ①满足两个条件则可判定有解 ②一般地,若给定区间为函数定义域的子区间,则函 数图像在此区间上连续 例2 判断方程 是否有解 学:完成方法一 师:引导学生完成方法二及方法三。

      方法一:经试算f(0.1)=1- <0,f(100)=2- >0, 且函数f(x)= 的图像在[0.1,100]上连续, 所以方程 在(0.1,100)上有解 y 方法二:画出函数f(x)= 的图像如下:(画图过程利用多媒体展示)x从图可得:方程 有两个解,即为图中交点的横坐标 方法三:题中方程可变形为 则可得到两个函数y= 及y= 可画出两个函数图象如下: Y=Y=xy01 从图可得:方程 在(0,1)和(1,+∞)上各有一解 小结:①函数图象与x轴交点的横坐标叫做函数的零点,即函数的零点为对应方程的 解 ②利用函数图像判断方程的解更加直观 ③数形结合思想的应用 ④发散思维一题多解。

      4.课堂练习:(多媒体展示) ①断方程x3-x=0在[-2,2]上是否有解 学:课堂内独立完成 师:讲解评价,鼓励学生一题多解,代数法,几何法 ②断方程x3+x=0 在(-∞,0)上是否有解 师:引导启发,类比例二 学:思考交流后完成 ③用函数增长的快慢判断方程x3=2x是否有解 师:思考题,引导学生一起完成 学:回顾幂函数,指数函数增长快慢的性质 设计以上练习题的意图: 继续巩固例题中讲解的判定方程解存在性的方法;一题多解,开阔思路;从函数值,函数图象两大方面方法进行练习,使学生体会数形结合的优势;代数法、何法的合理应用;感受数学知识的内在联系5.课堂小结:(师生共同完成,并用多媒体展示) ①理解零点与方程解的关系 ②利用函数性质判定方程解的存在,例如,利用函数值、像等 ③要求熟练掌握利用函数值判定解存在的方法 ④理解数形结合思想在判定方程解存在中的应用6.布置作业: 判定下列方程在给定区间上是否有解: ⑴ x5+3x+1=0,x∈[-1,1]; ⑵ ,x∈[-1,1]; ⑶ ,x∈[ - , ].九、课堂反思 本节课的内容容量偏大,虽说用课件节约了不少时间,可是还是显得时间紧迫,每个知识点都不能深追细节,这是这节课最大的败笔。

      此节课的优点在于合理利用了多媒体,节约了不少时间,并且课件中简单的动画和缤纷的色彩大大提高了学生学习的兴趣;一题多解,开拓了学生的思维;让学生感识到数形结合,特殊到一般的数学思想;体会数学知识之间的内在联系。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.