五年级数学第二单元知识点3篇.docx
36页五年级数学第二单元知识点3篇五年级数学第二单元知识点1 1.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算 如:0.60.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算 2.小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除商的小数点要和被除数的小数点对齐整数部分不够除,商0,点上小数点如果有余数,要添0再除 3.(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算 注意:如果被除数的位数不够,在被除数的末尾用0补足 4.(P23)在实际应用中,小数除法所得的商也可以根据需要用四舍五入法保留一定的小数位数,求出商的近似数 5.(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变 ②除数不变,被除数扩大,商随着扩大③被除数不变,除数缩小,商扩大 6.(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数 循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如6.3232的循环节是32 7.小数部分的位数是有限的小数,叫做有限小数小数部分的位数是无限的小数,叫做无限小数五年级数学第二单元知识点2 分数乘法 (一)、分数乘法的意义 1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算 例如:12(5)×6,表示:6个12(5)相加是多少,还表示12(5)的6倍是多少 2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少 例如:6×12(5),表示:6的12(5)是多少 7(2)×12(5),表示:7(2)的12(5)是多少 (二)、分数乘法的计算法则: 1、整数和分数相乘:整数和分子相乘的积作分子,分母不变 2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母 3、注意:能约分的先约分,然后再乘,得数必须是最简分数当带分数进行乘法计算时,要先把带分数化成假分数再进行计算 (三)、分数大小的比较: 1、一个数(0除外)乘以一个真分数,所得的积小于它本身一个数(0除外)乘以一个假分数,所得的积等于或大于它本身一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大 (四)、解决实际问题 1分数应用题一般解题步行骤 (1)找出含有分率的关键句 (2)找出单位“1”的量 (3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量 (4)根据已知条件和问题列式解答 2.乘法应用题有关注意概念 (1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? (2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则当句子中的单位“1”不明显时,把原来的量看做单位“1” (3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几 (4)在应用题中如:小湖村去年水稻的.亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?” (5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式 (7)乘法应用题中,单位“1”是已知的 (8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则 (9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)单位“1”×分率=比较量;比较量÷分率=单位“1” (10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减 (11).单位“1”的特点:①单位“1”为分母;②单位“1”为不变量 (12)分率与量要对应 ①多的对应量对多的分率; ②少的对应量对少的分率; ③增加的对应量对增加的分率; ④减少的对应量对减少的分率; ⑤提高的对应量对提高的分率; ⑥降低的对应量对降低的分率; ⑦工作总量的对应量对工作总量的分率; ⑧工作效率的对应量对工作效率的分率; ⑨部分的对应量对部分的分率; ⑩总量的对应量对总量的分率; 例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算) 方法:单位“1”的数量×对应分率=对应数量。
2、分数的连乘找到每一个分率的单位“1” (五)、倒数 1、倒数:乘积是1的两个数互为倒数 2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置 3、0没有倒数,1的倒数是它本身 4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数 五年级数学第二单元知识点3篇扩展阅读 五年级数学第二单元知识点3篇(扩展1) ——小学数学五年级第二单元知识点3篇 小学数学五年级第二单元知识点1 1、2和6是12的因数12是2的倍数,也是6的倍数因数和倍数的描述:谁是谁的因数,谁是谁的倍数 2、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是整数(一般不包括0) 3、一个数的最小因数是1,最大的因数是它本身 4、一个数的因数的个数是有限的 5、一个数的最小倍数是它本身,没有最大的倍数 6、一个数的倍数的个数是无限的 7、五年级下册数学知识点第二单元因数和倍数:因数或=它本身、倍数或=它本身、最大的因数=最小的倍数=它本身 8、个位上是0、2、4、6、8的数是2的倍数。
9、自然数中,是2的倍数的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数不是2的倍数的数叫奇数也就是个位上是1、3、5、7、9的数 10、自然数分成偶数和奇数,最小的偶数是0,最小的奇数是1 11、个位上是0或5的数,是5的倍数 12、个位上是0的数,既是2的倍数,又是5的倍数 13、奇数+、偶数=奇数奇数+、奇数=偶数偶数+、偶数=偶数 14、一个数各位上的数的和是3的倍数,这个数就是3的倍数 15、既是2和5的倍数,又是3的倍数的最小三位数是120 16、同时满足2.3.5的倍数,实际是求235=30的倍数 17、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数) 18、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数至少3个因数) 19、1既不是质数,也不是合数 20、最小的质数是2,最小的合数是4 21、按因数的个数划分为:自然数分为质数、合数、1和0 22、按2的倍数划分:自然数分为偶数、奇数 23、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13的倍数,是的就是合数,不是的就是质数 24、20以内的质数:2、3、5、7、11、13、17、19 。
25、100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 27、每个合数都可以由几个质数相乘得到,质数相乘一定得合数小学数学五年级第二单元知识点2 长方体、正方体的特征 1、长方体有( )个面,( )个点,( )条棱长相对的面( ),每个面都是( )形,特殊情况有( )个面是正方形;棱长分为( )、( )和( ),各有( )条长方体最少有( )个面是长方形 2、长方体最多有( )个相对面是正方形,最多有( )个面的完全相同 3、正方体有( )个面,这些面都是( )形,( )个点,( )条棱长它所有的棱长都( ) 4、要焊接一个长10cm,宽8 cm,高6 cm的长方体框架,要准备10cm,8 cm,6 cm的铁丝各( )条 5、最少用( )个边长是1厘米的正方形可以拼成一个较大的正方形 6、最少用( )个棱长是1厘米的正方体可以拼成一个较大的正方体 7、一个长方体中,如果相交于一个顶点的三条棱的长度分别是6厘米,3厘米,3厘米,那么它( )个面是正方形,正方体的面积是( );有( )个面的面积相等,这些面的面积都是( )。
8、把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是( )厘米. 应用题 (1)要焊接一个长10cm,宽8 cm,高6 cm的长方体框架最少要铁丝多少厘米? (2)要焊接一个棱长6厘米的正方体框架最少要铁丝多少厘米? (3)一个长方体的框架的棱长总和是60厘米,它的长是5厘米,宽是4厘米高是多少厘米? (4)一个正方体的棱长总和是60厘米,它的一个面的面积是多少? (5)现有一根长150厘米的铁丝,用它焊接成一个正方体的框架,还剩下铁丝6厘米这个正方体框架的棱长是多少厘米? 长方体和正方体的表面积 一、填空 1、长方体或正方体的( ),叫做它的表面积 2、正方体是由( )个完全相同的( )围成的立体图形,正方体有( )条棱,它们的长度都( ),正方体有( )个顶点 3、因为正方体是长、宽、高都( )的长方体,所以正方体是( )的长方体 4、相交于一个顶点的( )条棱,分别叫做长方体的( )、( )、( ) 5、求长方体的表面积必须知道长方体的( ) 6、一个正方体的表面是54*方厘米,那么一个面的面积是( )*方厘米,棱长是( )厘米 7、长方体的长、宽、高都扩大2倍,那么表面就扩大( )倍。
8、正方体的棱长扩大3倍,表面积扩大( )倍 二、计算 (1)长方体的长是5厘米,高是4厘米,宽是3厘米.求它的表面积与棱长总和. (2)正方体的棱长是6厘米求它的表面积与棱长总和. (3)正方体的棱长总和是60厘米它的棱长是多少厘米?表面积是多少*方厘米? (4)一个长方体的棱长总和是60厘米,长是5厘米,宽是4厘米它的`表面积是多少? 三、实际应用 1、一节通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50节,需要多少*方米的铁皮? 2、一个长方体的游泳池,长20米,宽18米,水深2.5米 (1)游泳池的占地面积有多大?如果沿水池走1圈,要走多少米? (2)在四壁和底面抹水泥,求抹水泥的面积是。




