
决策树在考虑消费者外表的服装营销中的应用Word.doc
9页服装营销中基于消费者外表的决策树应用摘 要:论文主要是讨论利用服装销售的决策树算法模型,分析消费者外表特征印象与消费行为的关系,以期对消费者分类,指导营销,提高效率论文介绍了决策树算法原理;其次,讨论了消费者外表印象评价指标体系,并根据该体系由销售人员在服装店铺里进行了消费者的外表及其行为数据采集;应用了计算实例来说明服装消费者的外表营销决策树分类模型;利用工具Clementine中的决策树方法来进行营销规则的挖掘研究表明了该应用是切实可行的关键词:决策树算法;服装营销;消费者外表;行为倾向;分类服装销售人员常常根据消费者的外表特征来进行快速营销活动,以提高购买率从数据挖掘技术的角度来探讨基于消费者外表印象的快速营销技术,以帮助营销人员快速寻找外表印象营销规则1引言计算智能与数据库应用技术的快速发展,为企业的营销活动提供了新的手段,也带来了一些新的市场营销突破口近些年出现的客户关系管理( Customer Relationship Management ,CRM)被企业整合进企业资源规划(Enterprise Resource Planning ,ERP)以及企业管理决策系统中,以求在这个个性化时代更好地服务客户,并留住客户[1-3]。
数据库营销是一种靠收集客户特征信息以及消费习惯的技术,并希望通过应用计算智能模型来进行知识挖掘,以支持管理决策数据挖掘技术是数据库营销的技术基础,其原理大部分都离不开数理统计方法,例如:决策树、粗糙集、神经网络、CHAID等[4-6],但也包括一些高性能的计算智能或者是混合体数据挖掘技术近些年的应用集中在客户消费行为的信息处理[7-8],例如根据Web的访问规律来判断其喜好特征,根据消费者的个人基本资料如收入、学历、家庭结构等来分析其购买力、信用等级等,或者是收集客户Cookies信息来推荐商品,或者通过收集和处理其关联的消费信息来规划营销方式从实际营销的角度来看,企业的销售人员最常遇到的问题是如何将所面临的对象进行分类特别是服装销售人员,如何快速地确定面前的消费者类型,从而判断其与目标服装之间的吻合度,在有限的时间内采取有效的推荐,以促成交易,提高服装的购买率很重要就服装销售而言,销售人员更需要一种能通过观察消费者显露在外的特征而可预知其行为的能力或技术,这样可大大提高销售效率而现在研究的消费行为分类一般都是从消费者的心理着手[9],或者是依赖消费内在条件[10]从技术的角度来看,决策树是一种不错的分类方法[11],简单有效,应用广泛。
本文将讨论服装销售的决策树算法模型,通过分析消费者外表特征印象与消费行为的关系,以期对消费者分类,指导营销,提高效率2 决策树算法原理2. 1 决策树分类模型决策树模型最早由Hunt提出,他将概念表示成“属性—值”形式例如,对消费者的描述有多种属性:性别、年龄、打扮、发型和眼神等,属性的值域可表示为:1)属性(性别)={男,女};2)属性(年龄)= {儿童,少年,青年,中年,老年};3)属性(打扮)= {时髦,讲究,大众化,寒酸}概念学习系统(Concept Learning System, CLS)中的决策树节点就是决策属性,对应于待分类对象的属性,由某一节点引出的弧对应于这个属性的可能取值,叶节点对应于分类的结果图1表示了一棵决策树显然,决策树本身就对应着一种分类模式性别年龄打扮不购买购买不购买购买 男 女 儿童 青年 寒酸 时髦 图1一棵消费者外表属性构成的消费行为树 要提高搜索树的效率,首先必须保证树是一棵理想、最优的决策树为了提高效率,Quinlan提出了一种启发式搜索算法,称为ID3算法。
它以信息熵和信息增益度为衡量标准,搜索原则是首先选择熵增益最大的节点C4. 5、C5. 0算法对ID3进行了改进[12-13]2. 2 决策树ID3算法ID3算法的基本步骤是:1)选择属性表Attr List = {A, A,…, A,…, A},检测属性设为A;2) A的值域Value Type(A) = {V,…,V}的S个取值把训练实例集T分为S个子集,则T =;子集T中的所有实例的属性A的取值为V; 3)T中实例分类结果组成class = {C, C,…, C,…,C}, C的实例数为e,1≤j≤m,且=, |表示训练实例集T的实例总数,实例分类结果为C的概率为P=e/;4)求取相对信息熵:定义训练实例集的实例信息量为式(1): 定义子集T的实例平均信息量为式(2):子集实例数与实例总数关系如式(3):如果选择属性A作为检测属性来将训练实例集T分为S个子集后,可以由各实例子集的实例总信息量之和对实例集T的实例总数的平均值来表示实例集T的实例平均信息量,相对信息熵由式(4)确定:5)搜索的启发式如式(5),称为熵增益原理ID3选择信息量最大的属性A作为检测属性来划分实例集,达到分类的目的。
3 外表特征印象营销与决策树模型现在企业人员想通过了解详细的个人隐私来掌握消费者消费行为规律的做法遇到了强大阻力,人们对市场调研已经构筑了一道道心理防线,而且研究人员无法避免受访者的应付行为为了获得消费者在自然状态下的消费行为特征、对流行元素的感应规律,本文放弃了传统的调查研究法,而是通过营销人员对消费者外表特征的观察和评价,在自然状态下跟踪和记录消费者对指定款式服装的感应和行为变化;再利用决策树算法模型来建立客户印象类型与服装消费规则模型,并使用决策树挖掘工具进行实例分析3. 1 实验方法与步骤在广州选择了一家大型商场,指定了一款新的针织时尚衫,从8月底秋季上市,由销售人员一直观察记录了3个多月观察记录内容包括2个表,销售人员在消费者走后,进行现场回忆,在1~2min内完成消费者的购物行为与外表特征记录工作一个表是该款服装的销售日志,按时间与访问顺序记录每天访问的每个消费者行为类型,共分三种: a表示观察和咨询、b表示比划和试穿但没购买、c表示购买另一个表是消费者的外表特征,包括:身高、体型、衣着打扮、气质等体现人的消费心理和习惯的因素对这些可观察的外表特征进行了分类和索引表1是消费者外表特征评价指标体系。
销售人员只需要在消费者走后,进行现场回忆,就可在1~2min内完成消费者的外表特征记录工作每张表对应一条日志记录在本销售季节结束后,将数据输入到数据库中,然后根据决策树模型由研究人员进行数据处理此方法称为消费者外表印象分析表1 消费者外表印象与消费行为评估指标体系指标选择项性别A:男;B:女年龄A:12~17;B:18~24;C:25~34;D:35~49;E:50~64;F:65岁以上身高A:1.4米以下;B:1.4~1.5米;C:1.51~1.6米;D:1.61~1.7米;E:1.71~1.8米;F:1.8米以上体型 A:很瘦;B:比较瘦;C:匀称;D:比较丰满;E:很丰满衣裤A:高档;B:有点档次;C:大众化;D:比较低档;E:非常低档服饰A:非常精致;B:比较淡雅;C:大众化;D:比较有个性;E:非常独特打扮A:很合体;B:比较合体;C:大众化;D:比较有个性;E:非常独特发型A:很流行;B:有修饰、简洁;C:自然、普通;D:刻意、新潮;E:非常独特文化A:很有知识;B:比较知识;C:大众化;D:比较少文化;E:很少文化气质A:高贵;B:文雅;C:大众化;D:大方;E:急躁行动A:小心谨慎;B:有点保守;C:一般;D:比较随意;E:率直脸谱A:很有活力;B:阳光;C:一般;D:刻板;E:低沉眼神A:非常灵活;B:比较灵活;C:一般;D:比较专注;E:非常专注言谈A:喜欢交谈;B:能交谈;C:一般;D:少言语;E:沉默不语3.2数据预处理 表2和表3是指定的女式长袖针织时尚衫的消费者消费行为统计表,销售季节为8月底到12月初,其5折价为250元。
厂家给此产品的定位为25—34岁、温柔典雅型、中等收人的白领女性表2各特征各类别分布情况特征ABCDEF总计性别3402————————405年龄965220821712405体型 610518010212——405衣裤20143215270——405服饰12159177543——405打扮37156182300——405发型15165198243——405文化8222148270——405气质01071879811——405行动156616514415——405脸谱42692431536——405眼神15126174819——405言谈301501833111——405表3 各特征各类别的购买情况特征ABCDEF总计性别378————————81年龄31242156381体型 02439153——81衣裤0334350——81服饰0244980——81打扮3363660——81发型0245160——81文化0393930——81气质02136240——81行动71632170——81脸谱71844102——81眼神02441133——81言谈72934130——81实验中共记录了405位女性的特征,未排除重复访问的女性。
表2为消费者特征分布表,表3为对应的购买情况分布表405条消费行为记录中购买记录有8l条,其他为未购买记录3. 3 决策树模型与分类实例经过上面的数据预处理后,可以利用信息熵来分析厂商产品营销定位是否准确,也可通过最后规则的建立来为销售人员提供推销策略,以集中精力对付那些犹豫不决的人下面分别给出面向“性别、年龄和打扮”的信息熵增益情形可以看出,性别的增益最大,这说明,厂商首先必须按“性别”进行分类,其次是“年龄”,然后是“打扮”这说明厂商的分类基本上是正确的这样可得到一条营销规则:如果对象为女性,其年龄为25~34岁,打扮合体,则可能会购买该服装通常推销人员会根据厂商的指导意见来进行营销,但是还需要加入更多的元素推销人员可进一步根据上面的分类方法来进行分类,包括发型、气质与眼神等特征,从而可锁定对象,重点应对,在有限时间内推销给更多合适的顾客,提高购买率(目前统计的结果未超过20% )分类属性信息量与增益(“消费行为”信息总量)如下1)基于“性别”的分类:“性别”A的信息量;“。
