
【部编】广东省汕头市潮南区胪岗镇2021年九年级数学上学期期末模拟试卷含解析20211025114.docx
11页广东省汕头市潮南区胪岗镇2021年九年级数学上学期期末模拟试卷含解析20211025114一、选择题(共10题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.如图图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3.已知点A(6,3),点B(6,﹣3),则点A与点B的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.没有对称关系4.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是( )A.相切B.相交C.相离D.相切或相交5.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018B.﹣2016C.﹣2018D.﹣20176.如图,直线l是⊙O的切线,点A为切点,B为直线l上一点,连接OB交⊙O于点C,D是优弧AC上一点,连接AD、CD.若∠ABO=40.则∠D的大小是( )A.50B.40C.35D.257.如图,A,B,P是半径为2的⊙上的三点,∠APB=45,则的长为( )A.πB.2πC.3πD.4π8.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为( )A.﹣1B.2C.22D.309.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是( )A.B.C.2D.10.某城市广场中有一块圆形憩息地,市政府拟在此区域内修建一个菱形花坛(如图);花坛中心A与憩息地圆心重合,A到菱形的顶点B的距离为5m,B到圆周上C点的距离为4m,则花坛的边长是( )A.8mB.8.5mC.9mD.m二、填空题(共6题)1.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b= .2.如图,A(4,0),B(0,2),将线段AB绕原点O顺时针旋转90,线段AB的中点C恰好落在抛物线y=ax2上,则a= .3.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .4.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是 cm.5.已知关于x的方程x2+(2k+1)x+k2﹣2=0的两实根的平方和等于11,则k的值为 .6.如图,△ABC的周长为8,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为 .三、计算题(共2题)1.x2﹣2x﹣2=0;2.(x﹣1)(x﹣3)=8.四、解答题(共8题)1.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)2.如图所示,已知在平行四边形ABCD中,AB⊥AC,对角线AC,BD交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等.3.如图,△ABC是⊙O的内接三角形,请仅用无刻度的直尺在下列图形中按要求画图.(1)在图1中,已知OD⊥BC于点D,画出∠A的角平分线;(2)在图2中,已知OE⊥AB于点E,OF⊥AC于点F,画出∠A的角平分线.4.已知关于x的方程(a﹣1)x2+2x+a﹣1=0.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.5.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书 本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?6.如图,∠MAN=30,点O为边AN上一点,以O为圆心,4为半径作⊙O交AN于D,E两点.(1)当⊙O与AM相切时,求AD的长;(2)如果AD=2,那么AM与⊙O又会有怎样的位置关系?并说明理由.7.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?8.有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






