
五年级奥数11组合图形的面积.docx
6页五年级奥数11组合图形的面积第十一讲组合图形的面积教学目标1、切实掌握有关简单图形的概念、面积公式,牢固建立空间观念;2、切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,教学重难点在组合图形中,三角形的面积出现的机会很多,解题时我们要记住下面三点:1、两个三角形等底、等高,其面积相等;2、两个三角形底相等,高成倍数关系,面积也成倍数关系;3、两个三角形高相等,底成倍数关系,面积也成倍数关系新课导入组合图形是由两个或两个以上的简单的几何图形组合成的组合的形式分为两种:一是拼合组合,二是重叠组合由于组合图形具有条件相等的特点,往往使得问题的解决无从下手今天我们就一起来学习组合图形的面积的计算方法新知传授例题1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米,解:由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积我们可以假设有4个这样的三角形,且拼成了下图正方形显然,这个正方形的面积是12X12.那么,一个三角形的面积就是12X12?4=36平方厘米练习1正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方解:图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形这两个正方形的边长分别是12?(1, 2)=4(厘米)和 4X2=8(厘米)中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到即:12X12,(4X4,8X8)=64(平方厘米)例题2四边形ABC丙四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米三角形CDH勺面积是多少平方厘米,解:设大正方形的边长是a,小正方形的边长是bo(1)梯形EFAM面积是(a+b)Xb?2.三角形EFC的面积也是(a+b)Xb?2所以,两者的面积相等2)因为三角形AFH的面积二梯形EFAM面积,梯形EFHD勺面积,而三角形CDH的面积=三角形EFC的面积,梯形EFHD勺面积,所以,三角形CDH的面积与三角形AFH的面积相等,也是7平方厘米练习2下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米,解:要求梯形的面积,关键是要求出上底FD的长度连接FC后就能得到一个三角形EFC用三角形EBC的面积减去三角形FBC的面积就能得到三角形EFC的面积:8乂20?2,8乂8?2=48平方厘米。
FD=48X2?20=4.8厘米,所求梯形的面积就是(4.8,8)X8?2=51.2平方厘米例题3如图,ABCM直角梯形,求阴影部分的面一积和单位:厘米)解:按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC面积是:6X3?2=9平方厘米练习3两条对角线把梯形ABCD八割成四个三角形已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少,(单位:平方厘米)因为三角形ABD与三角形ACD等底等高,所以面积相等因此,三角解:1.形ABO勺面积和三角形DOCB面积相等,也是6平方厘米2.因为三角形BOCK面积是三角形DOC面积的2倍,所以B0的长度是0D的2倍,即三角形AB的面积也是三角形AOD的2倍所以,三角形AOD的面积是6?2=3平方厘米本课小结要正确解答组合图形的面积,应该注意以下几点:、切实掌握有关简单图形的概念、公式,牢固建立空间观念;12、仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的3、适当采用增加辅助线等方法帮助解题;4、采用割、补、分解、代换等方法,可将复杂问题变得简单。
课堂复习1、在三角形ABC中,DC=2BDCE=3AE阴影部分的面积是20平方厘米,求三角形ABC的面积解:(1)因为CE=3AE所以,三角形ADC勺面积是三角形ADE面积的4倍,是20X(1,3)=80平方厘为;(2)又因为DC=2BD所以,三角形ABM面积是三角形ADCS积的一半,是80?2=40平方厘米因此,三角形ABC的面积是80,40=120平方厘主2、边长是9厘米的正三角形的面积是边长为3厘米的正三角形面积的多少倍解:题中的已知条件不能计算出两种三角形的面积,我们可以用边长是3厘米的正三角形拼一个边长是9厘米的正三角形,从而看出它们之间的倍数关系从下图中可以看出:边长9厘米的正三角形是边长3厘米的正三角形面积的9倍。












