
错位重排专题汇总.docx
11页错位重排专题 错位重排问题专项 错位重排 1-6个元素的错位重排数分别为0,1,2,9,44,265递推公式:Dm=(m-1)*[D(m-1)+D(m-2)]; 错位重排模型:把编号为1-m的小球分别放入编号为1-n的箱子错位重排(即1号球不在1号箱子、2号球不在2号箱子…m号球不在m号箱子),且每个箱子一个球,有多少种不同情况? 楚香凝证明:假设总情况数为D(m)种,如果让1号球先选,有(m-1)种选择;假设1号球选的2号箱子,接下来让2号球选箱子,进行分类讨论: ①如果2号球选的1号箱子,相当于剩下的(m-2)个球进行错位重排,有D(m-2)种; ②如果2号球选的不是1号箱子,则题目可转化为把编号为2→m的小球分别放入编号为 1、3→m的箱子错位重排(即2号球不在1号箱子、3号球不在3号箱子…m号球不在m号箱子),相当于m-1个球错位重排,有D(m-1)种; 所以可得D(m)=(m-1)*[D(m-1)+D(m-2)],得证; 例1:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求所有车都不得停在原来的车位中,则一共有多少种不同的停放方式? A.9 B.12 C.14 D.16 楚香凝解析: 解法一:四种元素错位重排有9种,选A 解法二:ABCD四辆车分别停放在一二三四号位置,A先选有三种情况,假设A选了二号,那么B再选、有三种选择,剩下C和D都只有一种选择,共3*3=9种,选A 例2:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求有三辆车不能停在原来的车位中,则一共有多少种不同的停放方式? A.2 B.6 C.8 D.9 楚香凝解析:先选出停的正确的那辆车C(4 1)=4种,剩下三辆车错位重排有2种,共4*2=8种,选C 例3:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求有两辆车不能停在原来的车位中,则一共有多少种不同的停放方式? A.2 B.6 C.8 D.9 楚香凝解析:先选出停的正确的两辆车C(4 2)=6种,剩下两辆车错位重排有1种,共6*1=6种,选B 例4:五个瓶子都贴有标签,其中恰好贴错了三个,贴错的可能情况有多少种?A.60 B.46 C.40 D.20 楚香凝解析:先选出贴错的3个瓶子有C(5 3)=10种,三个贴错的瓶子相当于三个元素错位重排、有2种,共10*2=20,选D 例5:某单位安排五位工作人员在星期一至星期五值班,每人一天且不重复。
若甲、乙两人都不能安排在星期五值班,则不同的排班方法共有()种 A.6 B.36 C.72 D.120 楚香凝解析:选择一个工作人员安排到星期五有三种情况,剩下四个人随便排A(4 4)=24种,共3*24=72,选C 例6:幼儿园小班有7名小朋友,上课铃响慌乱中迅速回到座位上,结果只有3名小朋友坐到了自己的座位上,请问这样的情况一共有多少种? A.315 B.350 C.385 D.420 楚香凝解析:先选出4名坐错了的小朋友C(7 4)=35,然后4人错位重排有9种,共35*9=315种,选A 例7:设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有() A.30种 B.31种 C.32种 D.36种 楚香凝解析:总情况数A(5 5)=120种,都不相同相当于五个元素错位重排有44种,有一个杯盖和茶杯编号相同有C(5 1)*9=45种,所以满足题意的有120-44-45=31种,选B 例8:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()种? A.280 B.240 C.180 D.96 楚香凝解析:除去甲乙从另外四人中找一个人当翻译,有A(4 1)=4种,剩下的三个位置可以任意安排A(5 3)=60种,所以总共有4*60=240种,选B 例9:某班期中考试和期末考试有四个人两次成绩都排前4名,已知有一名同学两次排名一样,则这四个人期末排名有几种可能? A.4 B.6 C.8 D.10 楚香凝解析:相当于4个人中,其中一个位置不变、另外三个人错位重排,先选出位置不变的一个人有C(4 1)=4种、剩下三个人错位重排有2种情况,共4*2=8种,选C 例10:大学生剧团从8名学生中选出4人分别担任甲、乙、丙、丁四个不同的表演角色,若其中有两名学生不能担任甲角色,则不同的挑选方案共有()。
A.1200种 B.1240种 C.1260种 D.2100种 楚香凝解析:两名同学不能担任甲角色,所以甲角色有6种选择,剩下的三个角色可以任意 安排A(7 3),总共情况数=6*A(7 3)=1260人,选C 例11:从6名运动员中选4人参加4×100米接力,甲不跑第一棒和第四棒的参赛方案有多少种? A.120 B.240 C.180 D.60 楚香凝解析: 解法一:甲不能跑第一棒或第四棒的对立面是甲跑第一棒或者第四棒,总情况数=A(6 4)=360,其中“甲跑第一棒或者第四棒”的情况数有C(2 1)*A(5 3)=120,所以满足题意的情况数有360-120=240种,选B 解法二:因为甲不能跑第一棒和第四棒,所以第一棒有5种选择、第四棒有4种选择、第二棒有4种选择(包括甲)、第三棒有3种选择,所以共有5*4*4*3=240种,选B 例12:甲乙丙丁戊五个人站队,要求甲不站在第一位、乙不站在第二位、丙不站在第三位、丁不站在第四位,有多少种情况? A.42 B.44 C.53 D.60 楚香凝解析:对戊进行分类讨论;当戊站在第五位时,相当于四个人错位重排,有9种;当戊不站在第五位时,相当于五个人错位重排,有44种;共9+44=53种,选C 例13:甲乙丙丁戊五个人站队,要求甲不站在第一位、乙不站在第二位、丙不站在第三位,有多少种情况? A.44 B.53 C.60 D.64 楚香凝解析: 解法一:分类讨论 ①丁在第四位,若戊在第五位,相当于甲乙丙三个人错位重排、有2种;若戊不在第五位,相当于甲乙丙戊四个人错位重排、有9种; ②丁不在第四位,若戊在第五位,相当于甲乙丙丁四个人错位重排、有9种;若戊不在第五位,相当于甲乙丙丁戊五个人错位重排、有44种; 共有2+9+9+44=64种,选D 解法二:容斥原理 (甲排1)或(乙排2)或(丙排3)的情况数=甲1+乙2+丙3-(甲1乙2)-(甲1丙3)-(乙2丙3)+(甲1乙2丙3)=24+24+24-6-6-6+2=56种; 甲不排1且乙不排2且丙不排3=A(5 5)-56=64种,选D 例14:某单位有老陶和小刘等5名工作人员,需安排在星期一至星期五的中午值班,每人一次,若老陶星期一外出开会不能排,小刘有其他的事不能排在星期五,则不同的排法共有()种。
A.36 B.48 C.78 D.96 楚香凝解析: 解法一:老陶在周一有A(4 4)=24种,小刘在周五有A(4 4)=24种,老陶在周一且小刘在周五有A(3 3)=6种,老陶不在周一且小刘不在周五=总情况数-(老陶在周一)-(小刘在周五)+(老陶在周一且小刘在周五)=120-24-24+6=78种,选C 解法二:分类 ①老陶在周五,剩下四人随便排,有A(4 4)=24种; ②老陶不在周五,老陶有3种选择,小刘有3种选择,剩下三人随便排,共3*3*A(3 3)=54种; 共24+54=78种,选C 例15:从6名运动员中选出4个参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法? A.204 B.228 C.252 D.312 楚香凝解析:正面入手,分两类 (1)跑第四棒的是甲,剩下三个位置随便排A(5 3)=60种; (2)跑第四棒的不是甲,从除去甲乙剩下的四个人里选一个跑第四棒有4种,然后再从剩下四个人(除去甲)选一个跑第一棒,剩下两个位置随便排A(4 2)=12种,4*4*12=192种;共60+192=252种,选C 例16:把“keeper”进行错位重排,使得每种字母所在位置跟原来都不同,有多少种方法? A.3 B.6 C.12 D.36 楚香凝解析:字母keeper分别对应一二三四五六号位置;三个e只能排在146号位置、只有一种选择,kpe排在235号位置、有A(3 3)=6种选择,选B 例17:把三个a、三个b、三个c共九个字母排成三行三列,要求每行每列字母互不相同,不同排法有多少种? A.6 B.12 C.18 D.24 楚香凝解析:第一行abc排列有A(3 3)=6种,第二行相当于三个元素错位重排、有2种,第二行排好之后第三行随之固定,共6*2=12种,选A 例18:把“hello”进行错位重排,使得每种字母所在位置跟原来都不同,有多少种方法? A.3 B.6 C.12 D.24 楚香凝解析: 解法一:第一个l记为l1,第二个l记为l2;44-(只l1在四号位)-(只l2在三号位)-(l1在四号位且l2在三号位)=24,两个l可以互换位置,24/2=12种,选C 解法二:先排两个l,有C(3 2)=3种;对于剩下三个元素“h、e、o”和三个位置,其中一个字母不能在原来的位置上,有A(3 3)-A(2 2)=4种;共3*4=12种,选C 例19:五对夫妇共10个人围坐一个圆桌,男女相隔而坐且每对夫妇不相对而坐的情况数有多少种? A.264 B.528 C.1056 D.5280 楚香凝解析:先排五个男的,圆周排列,有A(4 4)=24种;顺时针分别给五人编号为1、3、5、7、9,则1号的妻子不坐6号位、3号的妻子不坐8号位、5号的妻子不坐10号位、 7号的妻子不坐2号位、9号的妻子不坐4号位,有44种;共24*44=1056种,选C 。
