好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

信号与系统ppt电子教案第四章连续系统的频域分析课件.ppt

78页
  • 卖家[上传人]:aa****6
  • 文档编号:54259371
  • 上传时间:2018-09-10
  • 文档格式:PPT
  • 文档大小:1.48MB
  • / 78 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第四章 连续系统的频域分析,4.1 信号分解为正交函数 4.2 傅里叶级数 4.3 周期信号的频谱 4.4 非周期信号的频谱——傅里叶变换 4.5 傅里叶变换的性质 4.6 周期信号的傅里叶变换 4.7 LTI系统的频域分析 4.8 取样定理,,,,,,,,点击目录 ,进入相关章节,,,第四章 连续系统的频域分析,4.1 信号分解为正交函数,一、矢量正交与正交分解,时域分析,以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数;而yf(t) = h(t)*f(t)本章将以正弦信号和虚指数信号ejωt为基本信号,任意输入信号可分解为一系列不同频率的正弦信号或虚指数信号之和 这里用于系统分析的独立变量是频率故称为频域分析矢量Vx = ( vx1, vx2, vx3)与Vy = ( vy1, vy2, vy3)正交的定义: 其内积为0即,4.1 信号分解为正交函数,由两两正交的矢量组成的矢量集合---称为正交矢量集,如三维空间中,以矢量 vx=(2,0,0)、vy=(0,2,0)、vz=(0,0,2) 所组成的集合就是一个正交矢量集例如对于一个三维空间的矢量A =(2,5,8),可以用一个三维正交矢量集{ vx,vy,vz}分量的线性组合表示。

      即 A= vx+ 2.5 vy+ 4 vz 矢量空间正交分解的概念可推广到信号空间,在信号空间找到若干个相互正交的信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性组合4.1 信号分解为正交函数,二、信号正交与正交函数集,1. 定义:,定义在(t1,t2)区间的两个函数 1(t)和 2(t),若满足,(两函数的内积为0),则称 1(t)和 2(t) 在区间(t1,t2)内正交2. 正交函数集:,若n个函数 1(t),  2(t),…,  n(t)构成一个函数集,当这些函数在区间(t1,t2)内满足,则称此函数集为在区间(t1,t2)的正交函数集4.1 信号分解为正交函数,3. 完备正交函数集:,如果在正交函数集{1(t),  2(t),…,  n(t)}之外,不存在函数φ(t)(≠0)满足,则称此函数集为完备正交函数集例如:三角函数集{1,cos(nΩt),sin(nΩt),n=1,2,…} 和虚指数函数集{ejnΩt,n=0,±1,±2,…}是两组典型的在区间(t0,t0+T)(T=2π/Ω)上的完备正交函数集 i =1,2,…,n),4.1 信号分解为正交函数,三、信号的正交分解,设有n个函数 1(t),  2(t),…,  n(t)在区间(t1,t2)构成一个正交函数空间。

      将任一函数f(t)用这n个正交函数的线性组合来近似,可表示为f(t)≈C11+ C22+…+ Cnn,如何选择各系数Cj使f(t)与近似函数之间误差在区间(t1,t2)内为最小通常使误差的方均值(称为均方误差)最小均方误差为,4.1 信号分解为正交函数,为使上式最小,展开上式中的被积函数,并求导上式中只有两项不为0,写为,即,所以系数,4.1 信号分解为正交函数,代入,得最小均方误差(推导过程见教材),在用正交函数去近似f(t)时,所取得项数越多,即n越大,则均方误差越小当n→∞时(为完备正交函数集),均方误差为零此时有,上式称为(Parseval)巴塞瓦尔公式,表明:在区间(t1,t2) f(t)所含能量恒等于f(t)在完备正交函数集中分解的各正交分量能量的总和函数f(t)可分解为无穷多项正交函数之和,4.2 傅里叶级数,4.2 傅里叶级数,一、傅里叶级数的三角形式,设周期信号f(t),其周期为T,角频率=2/T,当满足狄里赫利(Dirichlet)条件时,它可分解为如下三角级数—— 称为f(t)的傅里叶级数,系数an , bn称为傅里叶系数,可见, an 是n的偶函数, bn是n的奇函数。

      4.2 傅里叶级数,式中,A0 = a0,上式表明,周期信号可分解为直流和许多余弦分量其中, A0/2为直流分量;A1cos(t+1)称为基波或一次谐波,它的角频率与原周期信号相同;A2cos(2t+2)称为二次谐波,它的频率是基波的2倍; 一般而言,Ancos(nt+n)称为n次谐波可见An是n的偶函数, n是n的奇函数 an = Ancosn, bn = –Ansin n,n=1,2,…,将上式同频率项合并,可写为,4.2 傅里叶级数,二、波形的对称性与谐波特性,1 .f(t)为偶函数——对称纵坐标,,bn =0,展开为余弦级数2 .f(t)为奇函数——对称于原点,an =0,展开为正弦级数实际上,任意函数f(t)都可分解为奇函数和偶函数两部分,即 f(t) = fod(t) + fev(t)由于f(-t) = fod(-t) + fev(-t) = -fod(t) + fev(t) 所以,4.2 傅里叶级数,,,3 .f(t)为奇谐函数——f(t) = –f(t±T/2),此时 其傅里叶级数中只含奇次谐波分量,而不含偶次谐波分量即 a0=a2=…=b2=b4=…=0,三、傅里叶级数的指数形式,三角形式的傅里叶级数,含义比较明确,但运算常感不便,因而经常采用指数形式的傅里叶级数。

      可从三角形式推出:利用 cosx=(ejx + e–jx)/2,4.2 傅里叶级数,上式中第三项的n用–n代换,A– n=An,– n= – n, 则上式写为,令A0=A0ej0ej0t ,0=0,所以,4.2 傅里叶级数,令复数,称其为复傅里叶系数,简称傅里叶系数n = 0, ±1, ±2,…,表明:任意周期信号f(t)可分解为许多不同频率的虚指数信号之和 F0 = A0/2为直流分量4.2 傅里叶级数,四、周期信号的功率——Parseval等式,直流和n次谐波分量在1电阻上消耗的平均功率之和n≥0时, |Fn| = An/2周期信号一般是功率信号,其平均功率为,4.3 周期信号的频谱,4.3 周期信号的频谱及特点,一、信号频谱的概念,从广义上说,信号的某种特征量随信号频率变化的关系,称为信号的频谱,所画出的图形称为信号的频谱图周期信号的频谱是指周期信号中各次谐波幅值、相位随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω为横轴的平面上得到的两个图,分别称为振幅频谱图和相位频谱图因为n≥0,所以称这种频谱为单边谱也可画|Fn|~ω和n~ω的关系,称为双边谱。

      若Fn为实数,也可直接画Fn 4.3 周期信号的频谱,例:周期信号 f(t) = 试求该周期信号的基波周期T,基波角频率Ω,画出它的单边频谱图,并求f(t) 的平均功率解 首先应用三角公式改写f(t)的表达式,即,显然1是该信号的直流分量的周期T1 = 8,的周期T2 = 6,所以f(t)的周期T = 24,基波角频率Ω=2π/T = π/12 根据帕斯瓦尔等式,其功率为 P=,4.3 周期信号的频谱,是f(t)的[π/4]/[π/12 ]=3次谐波分量;,是f(t)的[π/3]/[π/12 ]=4次谐波分量;,画出f(t)的单边振幅频谱图、相位频谱图如图,4.3 周期信号的频谱,二、周期信号频谱的特点,举例:有一幅度为1,脉冲宽度为的周期矩形脉冲,其周期为T,如图所示令Sa(x)=sin(x)/x (取样函数),4.3 周期信号的频谱,, n = 0 ,±1,±2,…,Fn为实数,可直接画成一个频谱图设T = 4τ画图零点为,特点: (1)周期信号的频谱具有谐波(离散)性谱线位置是基频Ω的整数倍;(2)一般具有收敛性总趋势减小4.3 周期信号的频谱,谱线的结构与波形参数的关系:,(a) T一定,变小,此时(谱线间隔)不变。

      两零点之间的谱线数目:1/=(2/)/(2/T)=T/ 增多 (b) 一定,T增大,间隔减小,频谱变密幅度减小如果周期T无限增长(这时就成为非周期信号),那么,谱线间隔将趋近于零,周期信号的离散频谱就过渡到非周期信号的连续频谱各频率分量的幅度也趋近于无穷小4.4 傅里叶变换,4.4 非周期信号的频谱—傅里叶变换,一、傅里叶变换,非周期信号f(t)可看成是周期T→∞时的周期信号 前已指出当周期T趋近于无穷大时,谱线间隔趋近于无穷小,从而信号的频谱变为连续频谱各频率分量的幅度也趋近于无穷小,不过,这些无穷小量之间仍有差别 为了描述非周期信号的频谱特性,引入频谱密度的概念令,(单位频率上的频谱),称F(jω)为频谱密度函数4.4 傅里叶变换,考虑到:T→∞,Ω→无穷小,记为dω;n Ω→ ω(由离散量变为连续量),而,同时,∑ →∫,于是,,傅里叶变换式“-”,傅里叶反变换式,F(jω)称为f(t)的傅里叶变换或频谱密度函数,简称频谱 f(t)称为F(jω)的傅里叶反变换或原函数根据傅里叶级数,4.4 傅里叶变换,也可简记为,F(jω) = F [f(t)]f(t) = F –1[F(jω)] 或 f(t) ←→F(jω),F(jω)一般是复函数,写为F(jω) = | F(jω)|e j (ω) = R(ω) + jX(ω),说明 (1)前面推导并未遵循严格的数学步骤。

      可证明,函数f(t)的傅里叶变换存在的充分条件:,(2)用下列关系还可方便计算一些积分,4.4 傅里叶变换,二、常用函数的傅里叶变换,单边指数函数f(t) = e–tε(t),  >0实数,2. 双边指数函数f(t) = e–t ,  >0,4.4 傅里叶变换,3. 门函数(矩形脉冲),4. 冲激函数(t)、´(t),4.4 傅里叶变换,5. 常数1,有一些函数不满足绝对可积这一充分条件,如1,(t) 等,但傅里叶变换却存在直接用定义式不好求解可构造一函数序列{fn(t)}逼近f (t) ,即,而fn(t)满足绝对可积条件,并且{fn(t)}的傅里叶变换所形成的序列{Fn(j)}是极限收敛的则可定义f(t)的傅里叶变换F (j)为,这样定义的傅里叶变换也称为广义傅里叶变换4.4 傅里叶变换,构造 f(t)=e-t ,> 0←→,所以,又,因此, 1←→2(),另一种求法: (t)←→1代入反变换定义式,有,将→t,t→-,再根据傅里叶变换定义式,得,6. 符号函数,4.4 傅里叶变换,7. 阶跃函数(t),4.4 傅里叶变换,归纳记忆:,1. F 变换对,2. 常用函数 F 变换对:,,δ(t),ε(t),e -t ε(t),gτ(t),sgn (t),e –|t|,,,,,,,1,1,,2πδ(ω),4.5 傅里叶变换的性质,4.5 傅里叶变换的性质,一、线性(Linear Property),If f1(t) ←→F1(jω), f2(t) ←→F2(jω) then,Proof: F [a f1(t) + b f2(t)],= [a F1(jω) + b F2(jω) ],[a f1(t) + b f2(t) ] ←→ [a F1(jω) + b F2(jω) ],4.5 傅里叶变换的性质,For example F(jω) = ?,Ans: f (t) = f1(t) – g2(t),f1(t) = 1 ←→ 2πδ(ω),g2(t) ←→ 2Sa(ω),∴ F(jω) = 2πδ(ω) - 2Sa(ω),‖,-,4.5 傅里叶变换的性质,二、时移性质(Timeshifting Property),If f (t) ←→F(jω) then,where “t0” is real constant.,Proof: F [ f (t – t0 ) ],4.5 傅里叶变换的性质,For example F(jω) = ?,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.