好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中数学必修3知识点总结:第三章概率(20211126020441).pdf

2页
  • 卖家[上传人]:go****e
  • 文档编号:215717438
  • 上传时间:2021-11-26
  • 文档格式:PDF
  • 文档大小:15.81KB
  • / 2 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 高中数学必修3 知识点总结第三章概 率3.1.1 3.1.2 随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复 n 次试验,观察某一事件A是否出现,称n 次试验中事件A 出现的次数nA 为事件A 出现的频数; 称事件 A 出现的比例fn(A)=nnA为事件 A出现的概率: 对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A) ,称为事件A 的概率6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

      频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若 AB为不可能事件,即AB=,那么称事件A 与事件 B 互斥;(3)若 AB为不可能事件,AB 为必然事件,那么称事件A与事件 B互为对立事件;(4)当事件 A 与 B 互斥时,满足加法公式:P(A B)= P(A)+ P(B) ;若事件 A 与 B 为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1 ,于是有 P(A)=1P(B) 2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此 0P(A)1;2)当事件 A与 B互斥时,满足加法公式:P(AB)= P(A)+ P(B) ;3)若事件 A与 B为对立事件,则AB 为必然事件,所以P(AB)= P(A)+ P(B)=1 ,于是有 P(A)=1P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件 B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件 A 发生且事件B不发生;(2)事件 A 不发生且事件B 发生; (3)事件 A 与事件 B 同时不发生,而对立事件是指事件A 与事件 B 有且仅有一个发生,其包括两种情形;(1)事件 A 发生 B 不发生;(2)事件 B 发生事件 A 不发生,对立事件互斥事件的特殊情形。

      3.2.1 3.2.2 古典概型及随机数的产生1、 (1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性2)古典概型的解题步骤;求出总的基本事件数;求出事件A 所包含的基本事件数,然后利用公式P(A)=总的基本事件个数包含的基本事件数A3.3.13.3.2 几何概型及均匀随机数的产生1、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P(A)=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件 A;(1)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.