
上海高考教学数学函数经典压轴题分析详解.docx
9页上海高考教课数学函数经典压轴题剖析详解上海高考数学压轴题系列训练含答案及剖析详解1.(本小题满分12分)已知常数a>0,n为正整数,fn(x)=xn–(x+a)n(x>0)是关于x的函数.(1)判断函数fn(x)的单调性,并证明你的结论.(2)对任意n?a,证明f`n+1(n+1)<(n+1)fn`(n)解:(1)fn`(x)=nxn–1–n(x+a)n–1=n[xn–1–(x+a)n–1],a>0,x>0,∴fn`(x)<0,∴fn(x)在(0,+∞)单调递减.4分2)由上知:当x>a>0时,fn(x)=xn–(x+a)n是关于x的减函数,∴当n?a时,有:(n+1)n–(n+1+a)n?nn–(n+a)分又∴f`n+1(x)=(n+1)[xn–(x+a)n],∴f`n+1(n+1)=(n+1)[(n+1)n–(n+1+a)n]<(n+1)[nn–(n+a)n]=(n+1)[nn–(n+a)(n+a)n–1]2分(n+1)fn`(n)=(n+1)n[nn–1–(n+a)n–1]=(n+1)[nn–n(n+a)n–1],2分∵(n+a)>n,∴ f`n+1(n+1)<(n+1)fn`(n).2分2.(本小题满分12分)已知:y=f(x)定义域为[–1,1],且满足:f(–1)=f(1)=0,对任意u,v?[–1,1],都有|f(u)–f(v)|≤|u–v|.判断函数p(x)=x2–1可否满足题设条件?(2)1x,x[1,0],可否满足题设条件?判断函数g(x)=x,x[0,1]1解:(1)若u,v?[–1,1],|p(u)–p(v)|=|u2–v2|=|(u+v)(u–v)|,取 u=3?[–1,1],v=1?[–1,1],42则|p(u)–p(v)|=|(u+v)(u–v)|=5|u–v|>|u–v|,4因此p(x)不满足题设条件.(2)分三种情况谈论:10.若u,v?[–1,0],则|g(u)–g(v)|=|(1+u)–(1+v)|=|u–v|,满足题设条件;20.若u,v?[0,1],则|g(u)–g(v)|=|(1–u)–(1–v)|=|v–u|,满足题设条件;30.若u?[–1,0],v?[0,1],则:|g(u)–g(v)|=|(1–u)–(1+v)|=|–u–v|=|v+u|≤|v–u|=|u–v|,满足题设条件;40若u?[0,1],v?[–1,0],同理可证满足题设条件.综合上述得g(x)满足条件.3.(本小题满分14分)已知点P(t,y)在函数f(x)=x(x?–1)的图象上,且有t2–c2at+4c2=0(c?0).x1求证:|ac|?4;求证:在(–1,+∞)上f(x)单调递加.(3)(仅理科做)求证:f(|a|)+f(|c|)>1.证:(1)∵t?R,t?–1,∴⊿=(–c2a)2–16c2=c4a2–16c2?0,c?0,∴c2a2?16,∴|ac|?4.(2)由f(x)=1–1x,1法1.设–1
