
全等三角形的提高拓展训练经典题型50题(含答案).doc
10页全等三角形的提高拓展训练知识点睛 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (年北京中考题)已知中,,、分别平分和,、交于点,试判断、、的数量关系,并加以证明. 【例2】 如图,点为正三角形的边所在直线上的任意一点(点除外),作,射线与外角的平分线交于点,与有怎样的数量关系【变式拓展训练】如图,点为正方形的边上任意一点,且与外角的平分线交于点,与有怎样的数量关系 【例3】 已知:如图,ABCD是正方形,∠FAD=∠FAE. 求证:BE+DF=AE.【例4】 以的、为边向三角形外作等边、,连结、相交于点.求证:平分. 【例5】 (北京市、天津市数学竞赛试题)如图所示,是边长为的正三角形,是顶角为的等腰三角形,以为顶点作一个的,点、分别在、上,求的周长. 【例6】 五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°, 求证:AD平分∠CDE板块二、全等与角度【例7】如图,在中,,是的平分线,且,求的度数. 【例8】在等腰中,,顶角,在边上取点,使, 求. 【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在中,,,又在上,在上,且满足,,求. 【例10】 在四边形中,已知,,,,求的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形中,,,,,求的度数. 【例12】 (河南省数学竞赛试题) 在正内取一点,使, 在外取一点,使,且,求. 【例13】 (北京市数学竞赛试题) 如图所示,在中,,为内一点,使得,,求的度数.全等三角形证明经典20题(含答案)1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求ADADBC延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE 求证:BC=AB+DC证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.6.已知,E是AB中点,AF=BD,BD=5,AC=7,求FAEDCBDC作AG∥BD交DE延长线于GAGE全等BDE AG=BD=5AGF∽CDF AF=AG=5所以DC=CF=27.(5分)如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.延长AD至H交BC于H;BD=DC;所以:∠DBC=∠角DCB;∠1=∠2;∠DBC+∠1=∠角DCB+∠2;∠ABC=∠ACB;所以:AB=AC;三角形ABD全等于三角形ACD;∠BAD=∠CAD;AD是等腰三角形的顶角平分线所以:AD垂直BC8.(5分)如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA所以∠OAB=∠OBA9.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.证明:做BE的延长线,与AP相交于F点,∵PA 13、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。 求证:BF=CF证明:在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC14、(12分)如图:AB=CD,AE=DF,CE=FB求证:AF=DE因为AB=DCAE=DF,CE=FB CE+EF=EF+FB所以三角形ABE=三角形CDF因为 角DCB=角ABFAB=DC BF=CE三角形ABF=三角形CDE所以AF=DEDBCcAFE15.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证: AE=AF 连结BD,得到等腰三角形ABD和等腰三角形BDC,由等腰△两底角相等得:角ABC=角ADC 在结合已知条件证得:△ADE≌△ABF得AE=AF16.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 因为角1=角2∠3=∠4所以角ADC=角ABC.又因为AC是公共边,所以AAS==>三角形ADC全等于三角形ABC.所以BC等于DC,角3等于角4,EC=EC三角形DEC全等于三角形BEC所以∠5=∠6ACBDEF17.已知:如图,AB=AC,BD^AC,CE^AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.证明:因为 AB=AC, 所以 ∠EBC=∠DCB 因为 BD⊥AC,CE⊥AB 所以 ∠BEC=∠CDB BC=CB (公共边) 则有 三角形EBC全等于三角形DCB 所以 BE=CD18.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。 AEBDCF求证:DE=DF.AAS证△ADE≌△ADF19.在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证: ①≌;②;(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗若成立,请给出证明;若不成立,说明理由.(1) 证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,∴Rt△ADC≌Rt△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;20.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB求证:(1)AM=AN;(2)AM⊥AN证明:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN。
