好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2012年浙江省宁波市中考数学试卷及详细解答(共21页).doc

21页
  • 卖家[上传人]:des****85
  • 文档编号:241961441
  • 上传时间:2022-01-18
  • 文档格式:DOC
  • 文档大小:327KB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精选优质文档-----倾情为你奉上2012年浙江省宁波市中考数学试卷参考答案与试题解析 一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2012•宁波)(﹣2)0的值为(  )  A.﹣2  B.0  C.1  D.2考点:零指数幂分析:根据零指数幂的运算法则求出(﹣2)0的值解答:解:(﹣2)0=1.故选C.点评:考查了零指数幂:a0=1(a≠0),由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0),注意:00≠1.2.(2012•宁波)下列交通标志图案是轴对称图形的是(  )  A.  B.  C.  D.考点:轴对称图形专题:常规题型分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(2012•宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为(  )  A.  B.  C.  D.1考点:概率公式。

      分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,白球的数目为2.解答:解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是:2÷3=.故选A.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.(2012•宁波)据宁波市统计局年报,去年我市人均生产总值为元,元用科学记数法表示为(  )  A.1.04485×106元  B.0.×106元  C.1.04485×105元  D.10.4485×104元考点:科学记数法—表示较大的数专题:常规题型分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于有6位,所以可以确定n=6﹣1=5.解答:解:=1.04485×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.5.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为(  )  A.2,28  B.3,29  C.2,27  D.3,28考点:极差;众数。

      专题:常规题型分析:根据极差的定义,找出这组数的最大数与最小数,相减即可求出极差;根据众数的定义,找出这组数中出现次数最多的数即可.解答:解:这组数中,最大的数是30,最小的数是27,所以极差为30﹣27=3,29出现了3次,出现的次数最多,所以,众数是29.故选B.点评:本题考查了极差与众数的概念,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.6.(2012•宁波)下列计算正确的是(  )  A.a6÷a2=a3  B.(a3)2=a5  C.  D.考点:立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法专题:计算题分析:根据同底数幂的除法、幂的乘方、平方根、立方根的定义解答.解答:解:A、a6÷a2=a6﹣2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、=5,表示25的算术平方根式5,≠±5,故本选项错误;D、,故本选项正确.故选D.点评:本题考查了立方根、算术平方根、幂的乘方与积的乘方、同底数幂的除法,是一道基础题.7.(2012•宁波)已知实数x,y满足,则x﹣y等于(  )  A.3  B.﹣3  C.1  D.﹣1考点:非负数的性质:算术平方根;非负数的性质:偶次方。

      专题:常规题型分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.点评:本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.(2012•宁波)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为(  )  A.4  B.2  C.  D.考点:锐角三角函数的定义分析:根据cosB=,可得=,再把AB的长代入可以计算出CB的长.解答:解:∵cosB=,∴=,∵AB=6,∴CB=×6=4,故选:A.点评:此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.9.(2012•宁波)如图是某物体的三视图,则这个物体的形状是(  )  A.四面体  B.直三棱柱  C.直四棱柱  D.直五棱柱考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:只有直三棱柱的视图为1个三角形,2个矩形.故选B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及动手操作能力.10.(2012•宁波)如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是(  )  A.41  B.40  C.39  D.38考点:专题:正方体相对两个面上的文字。

      专题:常规题型分析:先求出所有面上的点数的总和,然后减去看得见的7个面上的点数的和,然后根据有理数的混合运算计算即可得解.解答:解:三个骰子18个面上的数字的总和为:3(1+2+3+4+5+6)=3×21=63,看得见的7个面上的数字的和为:1+2+3+5+4+6+3=24,所以,看不见的面上的点数总和是63﹣24=39.故选C.点评:本题考查了正方体相对面上的文字,利用整体思想,把所有的面分成看得见的面与看不见的面两个部分是解题的关键.11.(2012•宁波)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是(  )  A.b=a  B.b=a  C.b=  D.b=a考点:圆锥的计算分析:首先利用圆锥形圣诞帽的底面周长等于侧面的弧长求得小圆的半径,然后利用两圆外切的性质求得a、b之间的关系即可.解答:解:∵半圆的直径为a,∴半圆的弧长为∵把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,∴设小圆的半径为r,则:2πr=解得:r=如图小圆的圆心为B,半圆的圆心为C,作BA⊥CA于A点,则:AC2+AB2=BC2即:()2+()2=()2整理得:b=a故选D.点评:本题考查了圆锥的计算,解题的关键是利用两圆相外切的性质得到两圆的圆心距,从而利用勾股定理得到a、b之间的关系.12.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为(  )  A.90  B.100  C.110  D.121考点:勾股定理的证明。

      专题:常规题型分析:延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.解答:解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,矩形KLMJ的面积为10×11=110.故选C.点评:本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.二.填空题(每小题3分,共18分)13.(2012•宁波)写出一个比4小的正无理数 π(答案不唯一) .考点:实数大小比较专题:开放型分析:根据实数的大小比较法则计算即可.解答:解:此题答案不唯一,举例如:、π等.故答案为:π(答案不唯一).点评:本题考查了实数的大小比较,解题的关键是理解正无理数这一概念.14.(2012•宁波)分式方程的解是 x=8 .考点:解分式方程分析:观察可得最简公分母是2(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘2(x+4),得2(x﹣2)=x+4,2x﹣4=x+4,解得x=8.检验:把x=8代入x(x+4)=96≠0.故原方程的解为:x=8.故答案为:x=8.点评:考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.(2012•宁波)如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是 5 人.考点:扇形统计图。

      专题:计算题分析:根据参加外语兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答.解答:解:∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,∴参加课外兴趣小组人数的人数共有:÷24%=50(人),∴绘画兴趣小组的人数是50×(1﹣14%﹣36%﹣16%﹣24%)=5(人).故答案为5.点评:本题考查了扇形统计图,从图中找到相关信息是解此类题目的关键.16.(2012•宁波)如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB= 40 度.考点:等腰三角形的性质;平行线的性质分析:首先利用∠ACD=110°求得∠ACB与∠BAC的度数,然后利用三角形内角和定理求得∠B的度数,然后利用平行线的性质求得结。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.